【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計該技術(shù)指標(biāo)值的平均數(shù);(用各組區(qū)間中點(diǎn)值作代表)
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,試估計該條生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率;
(III)生產(chǎn)一件產(chǎn)品,若是合格品可盈利80元,不合格品則虧損10元,在(II)的前提下,從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取出兩件,記為兩件產(chǎn)品的總利潤,求隨機(jī)變量X的分布列和期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時,若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知2x≤256,且log2x≥ .
(1)求x的取值范圍;
(2)求函數(shù)f(x)=log2( )log2( )的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品x(百臺),總成本為C(x)(萬元),其中固定成本為2萬元,每生產(chǎn)1百臺,成本增加1萬元,銷售收入 (萬元),假定該產(chǎn)品產(chǎn)銷平衡.
(1)若要該廠不虧本,產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺時,可使利潤最大?
(3)求該廠利潤最大時產(chǎn)品的售價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測,服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.據(jù)進(jìn)一步測定,每毫升血液中含藥量不少于0.25微克時,治療疾病有效,則服藥一次治療該疾病有效的時間為( )
A.4小時
B.
C.
D.5小時
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣1,1)上的函數(shù)f(x)滿足:對任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求證:函數(shù)f(x)是奇函數(shù);
(Ⅱ)如果當(dāng)x∈(﹣1,0]時,有f(x)<0,試判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的判斷;
(Ⅲ)在(Ⅱ)的條件下,若a﹣8x+1>0對滿足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com