在通項為:“①(-1)n×n”的這個數(shù)列中,當n®¥時,極限等于1的數(shù)列個數(shù)是(。

A2                      B3              C4              D5

 

答案:A
提示:

數(shù)列的極限

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,如果對任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.則下列命題中真命題的序號是
①③
①③

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③“等差數(shù)列是常數(shù)列”是“等差數(shù)列成為比等差數(shù)列”的充分必要條件;
④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),則此數(shù)列的通項為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設n為正整數(shù),已知P1(a1,b1),P2(a2,b2),…,pn(an,bn),…都在函數(shù)y=(
12
)x
的圖象上.其中數(shù)列{an}是首項、公差都為1的等差數(shù)列,數(shù)列{cn}的通項為cn=anbn
(1)證明:數(shù)列{bn}是等比數(shù)列,并求出公比;
(2)求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合W是滿足下列兩個條件的無窮數(shù)列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無關的常數(shù)
(1)若{an}是等差數(shù)列,Sn是其前n項的和,a3=4,S3=18,試探究{Sn}與集合W之間的關系;
(2)設數(shù)列{bn}的通項為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設Cn=
1
5
[bn+(m-5)n]+
2
,求證:數(shù)列{Cn}中任意不同的三項都不能成為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

在通項為:“①(-1)n×n”的這個數(shù)列中,當n®¥時,極限等于1的數(shù)列個數(shù)是( )

A2                      B3              C4              D5

 

查看答案和解析>>

同步練習冊答案