精英家教網(wǎng)如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.求證:
(1)BE•DE+AC•CE=CE2;
(2)∠EDF=∠CDB;
(3)E,F(xiàn),C,B四點共圓.
分析:(1)連接CD后,根據(jù)圓周角定理及∠BEC為△ABE與△CDE的共公角,我們易得△ABE∽△CDE,根據(jù)相似三角形性質(zhì),結(jié)合比例的性質(zhì),易得答案.
(2)由(1)中△ABE∽△CDE,進(jìn)而得到∠EDC=∠FDB,根據(jù)等角的補(bǔ)角相等,我們易得∠EDF=∠CDB.
(3)AB是⊙O的直徑所對的圓周角為直角,易得△ECB為直角三角形,結(jié)合直角三角形斜邊上的中線等于斜邊的一半,我們易得E,F(xiàn),C,B到點D的距離相等,即E,F(xiàn),C,B四點共圓.
解答:解:(1)連接CD,如下圖所示:
精英家教網(wǎng)
由圓周角定理,我們可得∠C=∠B
又由∠BEC為△ABE與△CDE的共公角,
∴△ABE∽△CDE,
∴BE:CE=AE:DE,
∴BE•DE=CE•AE
∴BE•DE+AC•CE=CE2(3分)
(2)∵△ABE∽△CDE,
∴∠EDC=∠FDB,
∴∠EDF=∠CDB,(6分)
(3)∵AB是⊙O的直徑,
∴∠ECB=90°,
取EB的中點H,連接FH,CH
∴CH=
1
2
BE,
同理,F(xiàn)H=
1
2
BE,
所以,E,F(xiàn),C,B到點H的距離相等,
∴E,F(xiàn),C,B四點共圓.(10分)
點評:本題考查的知識點是相似三角形的判定及性質(zhì),四點共圓的判定,(3)中利用∠ADB=EFB=90°,根據(jù)圓內(nèi)接四邊形判定定理,也可證明E,F(xiàn),C,B四點共圓.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設(shè).若動點M在四面體P-ABC表面上運動,并且總保持PB⊥AM.設(shè)為動點M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設(shè)∠EAF=,為△AEF面積的函數(shù),求取最大值時二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,E、F分別是AD、BC邊上的點,EFABEFAC于點O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動,∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設(shè).若動點在四面體 表面上運動,并且總保持.設(shè)為動點的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案