關(guān)于x的方程|log0.5x|=(
1
2
)x
的解的個(gè)數(shù)為(  )
分析:關(guān)于x的方程|log0.5x|=(
1
2
)x
的解的個(gè)數(shù)轉(zhuǎn)化成函數(shù)y=|log0.5x|與y=(
1
2
)x
圖象的交點(diǎn)個(gè)數(shù),從而得到方程解得個(gè)數(shù).
解答:解:關(guān)于x的方程|log0.5x|=(
1
2
)x
的解的個(gè)數(shù)即可看成函數(shù)y=|log0.5x|與y=(
1
2
)x
圖象的交點(diǎn)個(gè)數(shù),
在同一坐標(biāo)系中畫出函數(shù)y=|log0.5x|與y=(
1
2
)x
圖象,
由圖象知這兩個(gè)函數(shù)圖象有2個(gè)交點(diǎn),
即關(guān)于x的方程|log0.5x|=(
1
2
)x
的解的個(gè)數(shù)為2,
故選B.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),函數(shù)的圖象的作法,考查數(shù)形結(jié)合與轉(zhuǎn)化思想,同時(shí)考查了分析問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程.
(1)log(x+a)2x=2.
(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1);
(3)(
3+2
2
)
x
+(
3-2
2
)
x
=6;
(4) lg(ax-1)-lg(x-3)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關(guān)于y=x對(duì)稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(2-x)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=g(x)-1,若關(guān)于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內(nèi)恰有三個(gè)不同實(shí)根,則實(shí)數(shù)a的取值范圍是
(
34
,2)
(
34
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)定義域內(nèi)單調(diào)遞增;
(2)記g(x)=log 2(2x-1).若關(guān)于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)定義域內(nèi)單調(diào)遞增;
(2)記g(x)=log數(shù)學(xué)公式.若關(guān)于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.11 指數(shù)與對(duì)數(shù)運(yùn)算(解析版) 題型:解答題

解關(guān)于x的方程.
(1)log(x+a)2x=2.
(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1);
(3)+=6;
(4) lg(ax-1)-lg(x-3)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案