函數(shù)f(x)=x·e-x的一個(gè)單調(diào)遞增區(qū)間是
A.(-1,0)
B.(2,8)
C.(1,2)
D.(0,2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2008年高中數(shù)學(xué)導(dǎo)數(shù)變?cè)囶} 題型:013
函數(shù)f(x)=x·e-x的一個(gè)單調(diào)遞增區(qū)間是
A.[-1,0]
B.[2,8]
C.[1,2]
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省鄭州市2007年高中畢業(yè)班第二次質(zhì)量預(yù)測(cè)數(shù)學(xué)理 題型:044
已知函數(shù)f(x)=x-ln(x+m)在定義域內(nèi)連續(xù).
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)m為何值時(shí)f(x)≥0恒成立?
(Ⅲ)給出定理:若函數(shù)g(x)在[a,b]上連續(xù),并具有單調(diào)性,且滿足g(a)與g(b)異號(hào),則方程g(x)=0在[a,b]內(nèi)有唯一實(shí)根.試用上述定理證明:當(dāng)且m>1時(shí),方程f(x)=0,在[1-m,em-m]內(nèi)有唯一實(shí)根(e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:浙江慈溪市2012屆高三5月模擬考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=x-alnx,(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈[e,e2]是否存在實(shí)數(shù)a,使得函數(shù)f(x)有最大值e,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:福建省廈門一中2012屆高三上學(xué)期期中數(shù)學(xué)理科試題 題型:044
設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R,e為自然對(duì)數(shù)的底數(shù),e=2.7182…,如果對(duì)任意的x∈(0,3e],恒有f(x)≤4e2成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省高密市2012屆高三5月適應(yīng)性訓(xùn)練數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)=ax-1-lnx(a∈R).
(Ⅰ)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)f(x)在x=1處取得極值,對(duì)x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅲ)當(dāng)0<x<y<e2且x≠e時(shí),試比較的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com