設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若x∈[1,+∞)時(shí),不等式f(x)≥a恒成立,實(shí)數(shù)a的取值范圍.
解:(1)當(dāng)時(shí), (2分) 當(dāng)時(shí),,在內(nèi)單調(diào)遞增; 當(dāng)時(shí),恒成立,故在內(nèi)單調(diào)遞增; 的單調(diào)增區(qū)間為 (4分) (2)①當(dāng)時(shí),, ,恒成立,在上增函數(shù). 故當(dāng)時(shí), (6分) 、诋(dāng)時(shí),,
(Ⅰ)當(dāng),即時(shí),在時(shí)為正數(shù),所以在區(qū)間上為增函數(shù).故當(dāng)時(shí),,且此時(shí) (8分) (Ⅱ)當(dāng),即時(shí),在時(shí)為負(fù)數(shù),在時(shí)為正數(shù),所以在區(qū)間上為減函數(shù),在上為增函數(shù).故當(dāng)時(shí),,且此時(shí) (10分) (Ⅲ)當(dāng),即時(shí),在時(shí)為負(fù)數(shù),所以在區(qū)間上為減函數(shù),故當(dāng)時(shí), (12分) 所以函數(shù)的最小值為. 由條件得此時(shí);或,此時(shí);或,此時(shí)無解. 綜上, (14分) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 | a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x2+a |
1 |
x-1 |
1 |
3 |
1 |
f(x) |
1 |
2 |
1 |
3•4k-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com