設(shè)函數(shù)
(Ⅰ)若在時(shí)有極值,求實(shí)數(shù)的值和的單調(diào)區(qū)間;
(Ⅱ)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.
(1);遞增區(qū)間為:和,遞減區(qū)間為:;(2).
【解析】
試題分析:(1)在時(shí)有極值,意味著,可求解的值.再利用大于零或小于零求函數(shù)的單調(diào)區(qū)間;(2)轉(zhuǎn)化成在定義域內(nèi)恒成立問(wèn)題求解
試題解析:(Ⅰ)在時(shí)有極值,有, 2分
又,有, 4分
有,
由有, 6分
又關(guān)系有下表
0 |
0 |
||||
遞增 |
|
遞減 |
|
遞增 |
的遞增區(qū)間為 和 , 遞減區(qū)間為 9分
(Ⅱ)若在定義域上是增函數(shù),則在時(shí)恒成立, 10分
,
需時(shí)恒成立,
化為恒成立,,
. 14分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的極值;2.利用導(dǎo)數(shù)判函數(shù)的單調(diào)性;3.恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川綿陽(yáng)高中高三第二次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(Ⅰ)若在x=處的切線(xiàn)與直線(xiàn)4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省方城一高高三第一次調(diào)研(月考)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,使不等式能成立,求實(shí)數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省南陽(yáng)市高三春期第十一次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)若在點(diǎn)x=0處的切線(xiàn)方程為y=x,求m,n的值。
(2)在(1)條件下,設(shè)求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年海南省高三上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿(mǎn)分12分)
設(shè)函數(shù),
(Ⅰ)若在上存在單調(diào)增區(qū)間,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí)在上的最小值為,求在該區(qū)間上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com