【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

【答案】A
【解析】解:由三視圖可知幾何體為從邊長為4的正方體切出來的三棱錐A﹣BCD.作出直觀圖如圖所示:
其中A,C,D為正方體的頂點,B為正方體棱的中點.
∴SABC= =4,SBCD= =4.
∵AC=4 ,AC⊥CD,∴SACD= =8
由勾股定理得AB=BD= =2 ,AD=4
∴cos∠ABD= =﹣ ,∴sin∠ABD=
∴SABD= =4
∴幾何體的表面積為8+8 +4
故選A.

【考點精析】利用由三視圖求面積、體積對題目進行判斷即可得到答案,需要熟知求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知數(shù)列{an}的前n項和Sn= ,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設bn=2an+(﹣1)nan , 求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在區(qū)間[ ,π]上為增函數(shù),求實數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中真命題的個數(shù)為(
①命題“若lgx=0,則x=l”的逆否命題為“若lgx≠0,則x≠1”
②若“p∧q”為假命題,則p,q均為假命題
③命題p:x∈R,使得sinx>l;則¬p:x∈R,均有sinx≤1
④“x>2”是“ ”的充分不必要條件.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)圖象上存在A,B兩個不同的點與g(x)圖象上A′,B′兩點關于y軸對稱,則b的取值范圍為(
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如表:(單位:人)

幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50


(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?
(2)經過多次測試后,甲每次解答一道幾何題所用的時間在5﹣7分鐘,乙每次解答一道幾何題所用的時間在6﹣8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
附表及公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(1)求證: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】預計某地區(qū)明年從年初開始的前 個月內,對某種商品的需求總量 (萬件)近似滿足: ,且
(1)寫出明年第 個月的需求量 (萬件)與月份 的函數(shù)關系式,并求出哪個月份的需求量超過 萬件;
(2)如果將該商品每月都投放到該地區(qū) 萬件(不包含積壓商品),要保證每月都滿足供應, 應至少為多少萬件?(積壓商品轉入下月繼續(xù)銷售)

查看答案和解析>>

同步練習冊答案