【題目】設函數(shù)f(x)的定義域是(0,+∞),對于任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),且當x>1時,f(x)>0,f(2)=1.
(1)求 的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求方程4sinx=f(x)的根的個數(shù).
【答案】
(1)解:令m=n=1,則f(1)=f(1)+f(1),
∴f(1)=0
令 ,則 ,
∴
(2)解:設0<x1<x2,則
∵當x>1時,f(x)>0
∴
所以f(x)在(0,+∞)上是增函數(shù)
(3)解:∵y=4sinx的圖象如右圖所示
又f(4)=f(2×2)=2,f(16)=f(4×4)=4
由y=f(x)在(0,+∞)上單調(diào)遞增,
且f(1)=0,f(16)=4可得y=f(x)的圖象大致形狀如右圖所示,
由圖象在[0,2π]內(nèi)有1個交點,
在(2π,4π]內(nèi)有2個交點,
在(4π,5π]內(nèi)有2個交點,又5π<16<6π,
后面y=f(x)的圖象均在y=4sinx圖象的上方.
故方程4sinx=f(x)的根的個數(shù)為5個
【解析】(1)利用賦值法,對于任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),可令m=n=1,先求出f(1),然后令 ,即可求出 的值;(2)先在定義域內(nèi)任取兩個值x1 , x2 , 并規(guī)定大小,然后判定出f(x1),與f(x2)的大小關系,根據(jù)單調(diào)增函數(shù)的定義可知結論;(3)分別畫出y=4sinx的圖象與y=f(x)的圖象,結合圖象以及函數(shù)的單調(diào)性判定出交點的個數(shù)即可.
【考點精析】關于本題考查的函數(shù)單調(diào)性的判斷方法,需要了解單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①命題“x∈R,x2+x+1=0”的否定是“x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤﹣1},則A∩(RB)=A;
③函數(shù)f(x)=sin(ωx+φ)(ω>0)是偶函數(shù)的充要條件是φ=kπ+ (k∈Z);
④若非零向量 , 滿足 =λ , =λ (λ∈R),則λ=1.
其中正確命題的序號有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)求實數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在動點N使CN=2MN成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,設動點M(2,t)(t>0).
(1)若過點P(0,4 )的直線l與圓C:x2+y2﹣8x=0相切,求直線l的方程;
(2)求以OM為直徑且被直線3x﹣4y﹣5=0截得的弦長為2的圓的方程;
(3)設A(1,0),過點A作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點N(0,1)且與直線l垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調(diào)查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?
(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取2名學生參加某項活動,問2名學生中有1名男生的概率是多少?
(3)學生的學習積極性與對待班級工作的態(tài)度是否有關系?請說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a≠0,集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8≥0},C={x|x2﹣4ax+3a2<0},且C(A∩RB).求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,△ABC是等邊三角形,D是AC的中點,PA=PC,二面角P﹣AC﹣B的大小為60°;
(1)求證:平面PBD⊥平面PAC;
(2)求AB與平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com