橢圓的長軸長是短軸長的兩倍,且過點
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同的兩點,求的值.

(1);(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的中心在原點,焦點在坐標(biāo)軸上,離心率為,且過點(4,-)(1)求雙曲線的方程.(2)若點M(3,m)在雙曲線上,求證:.(3)若點A,B在雙曲線上,點N(3,1)恰好是AB的中點,求直線AB的方程(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)拋物線的焦點為,過點的直線交拋物線于,兩點.
為坐標(biāo)原點,求證:;
②設(shè)點在線段上運動,原點關(guān)于點的對稱點為,求四邊形面積的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知頂點在坐標(biāo)原點,焦點在軸正半軸的拋物線上有一點,點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設(shè)為拋物線上的一個定點,過作拋物線的兩條互相垂直的弦,,求證:恒過定點.(3)直線與拋物線交于,兩點,在拋物線上是否存在點,使得△為以為斜邊的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分) 如圖,已知拋物線與坐標(biāo)軸分別交于A、B、C三點,過坐標(biāo)原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線.(1)求拋物線對應(yīng)的二次函數(shù)的解析式;(2)求證:以O(shè)N為直徑的圓與直線相切;(3)求線段MN的長(用表示),并證明M、N兩點到直線的距離之和等于線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題分12分)
如圖,斜率為1的直線過拋物線的焦點,與拋物線交于兩點A、B, 將直線按向量平移得到直線,上的動點,為拋物線弧上的動點.
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x2=4y的焦點為F,曲線C2與C1關(guān)于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓方程為,為其左右焦點,點為橢圓上一點,且,.
(1)求的面積. (2)直線過點與橢圓交于兩點,若為弦的中點,求的方程.

查看答案和解析>>

同步練習(xí)冊答案