【題目】【選修4-5:不等式選講】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值的集合T;
(Ⅱ)設(shè)m、n∈T,證明: |m+n|<|mn+3|.
【答案】(1)解:∵f(x)=|x﹣1|+|x+2|≥|x﹣1﹣x﹣2|=3,不等式f(x)>a2對(duì)任意實(shí)數(shù)x恒成立, ∴3>a2 , ∴﹣ <a< ,
∴T={a|﹣ <a< };
(Ⅱ)證明:由(1)可得m2<3,n2<3,
∴(m2﹣3)(3﹣n2)<0,
∴3(m+n)2<(mn+3)2 ,
∴ |m+n|<|mn+3|
【解析】(I)利用絕對(duì)值三角不等式求得f(x)的最小值為3,可得3>a2 , 由此求得實(shí)數(shù)a的取值的集合T;(Ⅱ)由(1)可得m2<3,n2<3,再整理,即可證明結(jié)論.
【考點(diǎn)精析】利用絕對(duì)值不等式的解法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+ ,且f(x)+f( )=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經(jīng)過(guò)點(diǎn)(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f( )>0;
(3)當(dāng)f(x)存在三個(gè)不同的零點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b,c是關(guān)于x的一元二次方程x2+mx﹣a2+b2+c2=0的兩根.
(1)求角A的大小;
(2)已知a= ,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位后,得到的圖象關(guān)于點(diǎn)( ,﹣1)對(duì)稱,則m的最小值是( )
A.
B.
C. π
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,a2=4,設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)于任意的n>1,n∈N* , Sn+1+Sn﹣1=2(Sn+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四菱錐P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 = ,則這個(gè)三角形必含有( )
A.90°的內(nèi)角
B.60°的內(nèi)角
C.45°的內(nèi)角
D.30°的內(nèi)角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)市場(chǎng)對(duì)某種商品的周銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近100周的統(tǒng)計(jì)結(jié)果如下表所示:
周銷售量 | 2 | 3 | 4 |
頻數(shù) | 20 | 50 | 30 |
(1)根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤(rùn)為2千元,ξ表示該種商品兩周銷售利潤(rùn)的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)平放的各棱長(zhǎng)均為 4 的三棱錐內(nèi)有一個(gè)小球,現(xiàn)從該三棱錐頂端向錐內(nèi)注水,小球慢慢上。(dāng)注入的水的體積是該三棱錐體積的 時(shí),小球恰與該三棱錐各側(cè)面及水面相切(小球完全浮在水面上方),則小球的表面積等于( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com