若PA⊥平面ABCD,且ABCD是矩形,若PA=3,AB=2,BC=2
3
,則二面角P-BD-A的正切值為
 
考點:二面角的平面角及求法
專題:空間角
分析:利用PA⊥面ABCD,通過由三垂線定理法作出二面角,過A做AH⊥BD與H,連接PH即可,再在直角△PHB中求解.
解答: 解:過A作AH⊥BD與H,連接PH,因為PA⊥面ABCD,所以∠PHA即為二面角P-BD-A的平面角.
在直角△PHB中,因為PA=3,AB=2,BC=2
3
,BD=
22+(2
3
)
2
=4,
AH=
AB×AD
BD
=
2×2
3
4
=
3
,
所以tan∠PHA=
PA
AH
=
3
3
=
3

故答案為:
3
點評:本題考查三垂線定理法求二面角,考查空間想象能力,屬于基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若從5名男歌手和4名女歌手中各選一人參加“星光大道”節(jié)目,則不同的選法種數(shù)是( 。
A、5種B、4種C、9種D、20種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知集合M={x|x2-2x-3=0},N={x|ax=1},若N⊆M,求實數(shù)a的值.
(2)已知 p:f(x)=
1-x
3
,且|f(a)|<2;q:集A={x|x2+(a+2)x+1=0,x∈R},且A≠∅.若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
41
+
y2
25
=1的兩個焦點為F1,F(xiàn)2,弦AB過點F1,則△ABF2的周長為(  )
A、10
B、20
C、2
41
D、4
41

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
9n(n+1)
10n
,試判斷此數(shù)列是否有最大項?若有,第幾項最大,最大項是多少?若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究機構(gòu)對高一學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)
x67891012
y233456
該研究機構(gòu)的研究方案是:先從這六組數(shù)據(jù)中選取四組求線性回歸方程,再用剩下的兩組數(shù)據(jù)進行檢驗.
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),根據(jù)x=6,8,10,12四組數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程
?
y
=
?
b
x+
?
a
;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差不超過1,則認為得到的線性回歸方程是理想的,試問該機構(gòu)所得線性回歸方程是否理想?
(相關(guān)公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,求證:PA⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:(x-5)3+x3+4x=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+1|-|x-1|(x∈R).
(1)如果命題“對于所有x∈R,f(x)≤a”是真命題,求a的取值范圍;
(2)如果命題“有一個x∈R,f(x)≤a”是真命題,求a的取值范圍.

查看答案和解析>>

同步練習冊答案