精英家教網 > 高中數學 > 題目詳情
函數f(x)=,若f(x1)+f(2x2)=1,則f(x1+2x2)的極小值為( )
A.
B.
C.
D.
【答案】分析:欲求f(x1+2x2)的極小值,只須求出的最小值即可,根據題目中條件:“f(x1)+f(2x2)=1”結合基本不等式即可求得的最小值即可.
解答:解:∵f(x)=
∴f(x1)=,f(2x2)=,
∵f(x1)+f(2x2)=1,
+=1


解得:,
則f(x1+2x2)的極小值為
故選B.
點評:本小題主要考查函數單調性的應用、不等式的應用、不等式的解法等基礎知識,考查運算求解能力與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在區(qū)間D上的函數f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數f(x)在區(qū)間D上可被函數g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的定義域為R,則下列命題中:?
①若f(x-2)是偶函數,則函數f(x)的圖象關于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數f(x)的圖象關于原點對稱;?③函數y=f(2+x)與函數y=f(2-x)的圖象關于直線x=2對稱;?④函數y=f(x-2)與函數y=f(2-x)的圖象關于直線x=2對稱.?
其中正確的命題序號是
.?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

對于定義在區(qū)間D上的函數f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數f(x)在區(qū)間D上可被函數g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案