【題目】已知曲線C的極坐標方程為ρ= ,直線l的參數(shù)方程為(t為參數(shù),0≤α<π).

(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;

(2)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

【答案】(1)曲線Cy24x,頂點為O00),焦點為F10)的拋物線;(28

【解析】

1)利用即可得出直角坐標方程;

2)直線l的參數(shù)方程 t為參數(shù),0απ).可得l經(jīng)過點(01);若直線l經(jīng)過點(1,0),得到,得到直線l新的參數(shù)方程為t為參數(shù)).代入拋物線方程可得t+20,設(shè)A、B對應(yīng)的參數(shù)分別為t1,t2,利用|AB|即可得出.

1)曲線C的極坐標方程ρ化為ρ2sin2θ4ρcosθ,

得到曲線C的直角坐標方程為y24x,

故曲線C是頂點為O0,0),焦點為F1,0)的拋物線;

2)直線l的參數(shù)方程為 t為參數(shù),0απ).

l經(jīng)過點(0,1);

若直線l經(jīng)過點(1,0),則,

∴直線l的參數(shù)方程為t為參數(shù)).

代入y24x,得t+20

設(shè)AB對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=﹣6t1t22

|AB||t1t2|8

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個不同的交點,且(其中為坐標原點),求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱長為2的正方體,分別在棱,滿足,.

(1)試確定兩點的位置.

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C過點 ,兩個焦點

(1)求橢圓C的標準方程;

(2)設(shè)直線l交橢圓C于A,B兩點,且|AB|=6,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過拋物線的焦點,求拋物線的準線方程;

(2)若斜率為-1的直線經(jīng)過拋物線的焦點,且與拋物線交于,兩點,當時,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,底面,點分別為的中點,且異面直線所成的角的大小為.

(1)求證:平面平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案