【題目】設(shè)關(guān)于的一元二次方程,其中是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.
(1)若隨機(jī)數(shù);
(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù).
【答案】(1) (2)
【解析】
(1)根據(jù)判別式求得方程有實(shí)根的條件,用列舉法結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.
(2)畫出可行域,根據(jù)幾何概型概率計(jì)算公式,計(jì)算出所求概率.
(1)設(shè)事件為方程有實(shí)根,,有實(shí)根的充要條件為,若隨機(jī)數(shù)基本事件共有16個(gè):,
,
其中括號(hào)中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值,則事件中包含10個(gè)基本事件,
故事件發(fā)生的概率為.
(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>,如圖矩形.
構(gòu)成事件的區(qū)域?yàn)?/span>,如圖梯形.
概率為兩者的面積之比,所以所求的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在五邊形中,,,,,是以為斜邊的等腰直角三角形.現(xiàn)將沿折起,使平面平面,如圖②,記線段的中點(diǎn)為.
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個(gè)城市采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià): (單位:元/月)和購(gòu)買總?cè)藬?shù)(單位:萬(wàn)人)的關(guān)系如表:
定價(jià)x(元/月) | 20 | 30 | 50 | 60 |
年輕人(40歲以下) | 10 | 15 | 7 | 8 |
中老年人(40歲以及40歲以上) | 20 | 15 | 3 | 2 |
購(gòu)買總?cè)藬?shù)y(萬(wàn)人) | 30 | 30 | 10 | 10 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),請(qǐng)用線性回歸模型擬合與的關(guān)系,求出關(guān)于的回歸方程;并估計(jì)元/月的流量包將有多少人購(gòu)買?
(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價(jià)流量包,元以上(包括元)的流量包稱為高價(jià)流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識(shí),填寫下面列聯(lián)表,并通過(guò)計(jì)算說(shuō)明是否能在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為購(gòu)買人的年齡大小與流量包價(jià)格高低有關(guān)?
定價(jià)x(元/月) | 小于50元 | 大于或等于50元 | 總計(jì) |
年輕人(40歲以下) | |||
中老年人(40歲以及40歲以上) | |||
總計(jì) |
參考公式:其中
其中
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,上頂點(diǎn)為,原點(diǎn)O到直線的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)T在圓上,點(diǎn)A為橢圓的右頂點(diǎn),是否存在過(guò)點(diǎn)A的直線l交橢圓C于點(diǎn)B(異于點(diǎn)A),使得成立?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)經(jīng)濟(jì)不斷發(fā)展,網(wǎng)上開店銷售農(nóng)產(chǎn)品的人群越來(lái)越多,網(wǎng)上交易額也逐年增加,某一農(nóng)戶農(nóng)產(chǎn)品連續(xù)五年的網(wǎng)銀交易額統(tǒng)計(jì)表,如下所示:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
網(wǎng)上交易額(萬(wàn)元) | 5 | 6 | 7 | 8 | 10 |
經(jīng)研究發(fā)現(xiàn),年份與網(wǎng)銀交易額之間呈線性相關(guān)關(guān)系,為了計(jì)算的方便,農(nóng)戶將上表的數(shù)據(jù)進(jìn)行了處理,,得到如表:
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(1)求關(guān)于的線性回歸方程;
(2)通過(guò)(1)中的方程.求出關(guān)于的回歸方程;并用所求回歸方程預(yù)測(cè)到2020年年底,該農(nóng)戶網(wǎng)店網(wǎng)銀交易額可達(dá)多少?
(附:在線性回歸方程中,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)),易拉罐的體積為,設(shè)圓柱的高度為,底面半徑為,且,假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為元,易拉罐上下底面的制造費(fèi)用均為元為常數(shù)).
(1)寫出易拉罐的制造費(fèi)用(元)關(guān)于的函數(shù)表達(dá)式,并求其定義域;
(2)求易拉罐制造費(fèi)用最低時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠ABC=30°.△ABD中,∠ADB=90°,∠ABD=45°,且AC=1.將△ABD沿邊AB折疊后,
(1)若二面角C—AB—D為直二面角,則直線CD與平面ABC所成角的正切值為_______;
(2)若二面角C—AB—D的大小為150°,則線段CD的長(zhǎng)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com