數(shù)列{an}滿足a1=1,an+1=2an+1,若數(shù)列{an+c}恰為等比數(shù)列,則c的值為  

考點(diǎn):

數(shù)列遞推式;等比關(guān)系的確定.

專題:

計(jì)算題;等差數(shù)列與等比數(shù)列.

分析:

由已知可得1+an+1=2(an+1),從而可得數(shù)列{an+1}是以2為公比的等比數(shù)列,可求c

解答:

解:∵a1=1,an+1=2an+1,

∴1+an+1=2(an+1)

∴數(shù)列{an+1}是以2為公比的等比數(shù)列

故答案為:1

點(diǎn)評(píng):

本題主要考查了利用數(shù)列遞推關(guān)系an+1=pan+q構(gòu)造等比數(shù)列,屬于基礎(chǔ)試題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)b>0,數(shù)列{an}滿足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(4)證明:對(duì)于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1an-2
(n≥3)
,則a17等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,數(shù)列{an}滿足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知數(shù)列{an}極限存在且大于零,求A=
lim
n→∞
an
(將A用a表示);
(II)設(shè)bn=an-A,n=1,2,…,證明:bn+1=-
bn
A(bn+A)
;
(III)若|bn|≤
1
2n
對(duì)n=1,2,…
都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求證{bn}為等比數(shù)列;    
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=
4
3
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2013
的整數(shù)部分是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案