(2010•石家莊二模)已知O為坐標(biāo)原點(diǎn),點(diǎn)M(3,2),若N(x,y)滿足不等式組 
x≤y
x≥1
x+y≤4
,則
OM
ON
的最大值為
10
10
分析:先根據(jù)約束條件畫出可行域,由于
OM
ON
=(3,2)•(x,y)=3x+2y,設(shè)z=3x+2y,再利用z的幾何意義求最值,只需求出直線z=3x+2y過可行域內(nèi)的點(diǎn)A時(shí),z最大即可.
解答:解:先根據(jù)約束條件畫出可行域,
OM
ON
=(3,2)•(x,y)=3x+2y,
設(shè)z=3x+2y,
將最大值轉(zhuǎn)化為y軸上的截距最大,
x=y
x+y=4
得A(2,2),
當(dāng)直線z=3x+2y經(jīng)過交點(diǎn)A(2,2)時(shí),z最大,
最大為:10.
故答案為:10.
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)若函數(shù)y=f(x)的圖象如圖①所示,則圖②對應(yīng)函數(shù)的解析式可以表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知△ABC中,內(nèi)角A、B、C的對邊的邊長為a、b、c,且bcosC=(2a-c)cosB.
(Ⅰ)求角B的大;
(Ⅱ)若y=cos2A+cos2C,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知?jiǎng)訄AM經(jīng)過點(diǎn)G(0,-1),且與圓Q:x2+(y-1)2=8內(nèi)切.
(Ⅰ)求動(dòng)圓M的圓心的軌跡E的方程.
(Ⅱ)以m=(1,
2
)
為方向向量的直線l交曲線E于不同的兩點(diǎn)A、B,在曲線E上是否存在點(diǎn)P使四邊形OAPB為平行四邊形(O為坐標(biāo)原點(diǎn)).若存在,求出所有的P點(diǎn)的坐標(biāo)與直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)如圖,已知全集為U,A,B是U的兩個(gè)子集,則陰影部分所表示的集合是( 。

查看答案和解析>>

同步練習(xí)冊答案