化簡(jiǎn)
1-cosθ
1+cosθ
+
1+cosθ
1-cosθ
(π<θ<
2
)( 。
A、1
B、-1
C、sinθ
D、-
2
sinθ
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由θ的范圍確定出sinθ的正負(fù),1-cosθ與1+cosθ的正負(fù),原式被開(kāi)方數(shù)變形后,利用同角三角函數(shù)間的基本關(guān)系及二次根式的性質(zhì)化簡(jiǎn),計(jì)算即可得到結(jié)果.
解答: 解:∵π<θ<
2
,
∴sinθ<0,1-cosθ>0,1+cosθ>0,
原式=
(1-cosθ)2
(1+cosθ)(1-cosθ)
+
(1+cosθ)2
(1+cosθ)(1-cosθ)
=
(1-cosθ)2
sin2θ
+
(1+cosθ)2
sin2θ
=
|1-cosθ|
|sinθ|
+
|1+cosθ|
|sinθ|
=
1-cosθ+1+cosθ
-sinθ
=-
2
sinθ

故選:D.
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱中,ABC-A′B′C′,AB=AC=AA′=2,BC=
3
AB且此三棱柱的各個(gè)頂點(diǎn)都在一個(gè)球面上,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(-3,6),且
a
b
,
b
c
,則(
a
+
b
c
=(  )
A、13B、15C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x≤a},B={x|1<x<2},A∩(∁RB)={x|x≤1},則實(shí)數(shù)a的取值范圍是(  )
A、1≤a≤2
B、1<a<2
C、1≤a<2
D、1<a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,各個(gè)側(cè)面都是邊長(zhǎng)為a的正三角形,E,F(xiàn)分別是SC和AB的中點(diǎn),則直線EF與底面ABCD所成的角正切值為( 。
A、
5
5
B、
5
4
C、
6
3
D、
2
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是以4為周期的奇函數(shù),且f(-1)=1,則sin[πf(5)+
π
2
]=( 。
A、-1B、0C、0.5D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”,類似地,我們?cè)谄矫嫦蛄考疺上也可以定義一個(gè)稱為“序”的關(guān)系,記為“?”.定義如下:對(duì)于任意兩個(gè)平面向量
v1
=(a1,b1),
v2
=(a2,b2)(a1,b1,a2,b2∈R)“
v1
?
v2
”當(dāng)且僅當(dāng)“a1>a2”或“a1=a2,且b1>b2”時(shí)成立.下面命題為假命題的是( 。
A、(1,0)?(0,1)?(0,0)
B、若
v1
?
v2
,
v2
?
v3
,則
v1
?
v3
C、若
v1
?
v2
,則對(duì)于任意
v
∈V,
v1
+
v
?
v2
+
v
D、對(duì)于平面向量
v
?(0,0),若
v1
?
v2
,則
v
v1
?
v
v2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)據(jù)x1,x2,…,xn的平均數(shù)為
.
x
,方差為s2,則3x1+5,3x2+5,…,3xn+5的平均數(shù)和標(biāo)準(zhǔn)差分別為( 。
A、
.
x
,s
B、3
.
x
+5,s
C、3
.
x
+5,3s
D、3
.
x
+5,
9s2+30s+25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角θ的終邊過(guò)點(diǎn)P(5m,-12m),(m<0),則2sinθ+cosθ的值是(  )
A、
19
13
B、
19
13
或-
19
13
C、-
19
13
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案