在極坐標(biāo)系中,已知兩圓C1:ρ=2cosθ和C2:ρ=2sinθ,則過(guò)兩圓圓心的直線的極坐標(biāo)方程是________.
ρ(cosθ+sinθ)=1
分析:將極坐標(biāo)方程ρ=2cosθ和ρ=2sinθ化為一般方程,然后再求解過(guò)兩圓圓心的直線的直角坐標(biāo)方程,最后化成極坐標(biāo)方程即得.
解答:∵圓的極坐標(biāo)方程為ρ=2cosθ,
∴x=pcosθ,y=psinθ,消去p和θ得,
∴(x-1)2+y2=1,
∴圓C1的圓心的直角坐標(biāo)是(1,0),
同理,圓C2的圓心的直角坐標(biāo)是(0,1),
則過(guò)兩圓圓心的直線的直角坐標(biāo)方程是 x+y=1,
則過(guò)兩圓圓心的直線的極坐標(biāo)方程是 ρ(cosθ+sinθ)=1
故答案為:ρ(cosθ+sinθ)=1.
點(diǎn)評(píng):考查參數(shù)方程與普通方程的區(qū)別和聯(lián)系,要會(huì)互相轉(zhuǎn)化,根據(jù)實(shí)際情況選擇不同的方程進(jìn)行求解,這也是每年高考必考的熱點(diǎn)問(wèn)題.