設f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零實數(shù).若f(2010)=-1,求f(2011)的值.
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:由條件求得 asinα+bsinβ=-1,再根據(jù)f(2011)=-(asinα+bsinβ ),從而求得結果.
解答: 解:∵f(x)=asin(πx+α)+bcos(πx+β),
f(2010)=-1=asin(2010π+α)+bcos(2010π+α)=asinα+bsinβ,
∴asinα+bsinβ=-1.
∴f(2011)=asin(2011π+α)+bcos(2011π+β)=-(asinα+bsinβ )=1.
點評:本題主要考查利用誘導公式進行化簡求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入x∈[0,π],則輸出y的取值范圍是( 。
A、[0,1]
B、[
2
2
,1]
C、[-
2
2
,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x的焦點為F,直線l1與拋物線交于不同的兩點A、B,直線l2與拋物線交于不同的兩點C、D.
(Ⅰ)當l1過F時,在l1上取不同于F的點P,使得
|FA|
|FB|
=
|PA|
|PB|
,求點P的軌跡方程;
(Ⅱ)若l1與l2相交于點Q,且傾斜角互補時,|QA|•|QB|=a|QC|•|QD|,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點M(1,0)的直線交橢圓C:x2+3y2=6于A,B兩點.
(1)求弦AB中點的軌跡方程;
(2)若F為橢圓C的左焦點,求△ABF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC是⊙O的內接三角形,PA是⊙O的切線,切點為A,PB交AC于點E,交⊙O于點D,PA=PE,∠ABC=45°,PD=1,DB=8.
(1)求△ABP的面積;
(2)求弦AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx+c與x軸交于A(-1,0)、B(3,0),與y軸交于C點,且OC=3OA.
(1)求拋物線的函數(shù)解析式;
(2)若點P(m,n)是直線BC上方的拋物線一點,過P作PN∥OC交BC于N,設PN=h,求h關于m的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=
1
6
x3+
1
2
(a-2)x2+b,g(x)=2alnx.
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處的切線互相垂直,求a,b的值;
(Ⅱ)設F(x)=f′(x)-g(x),若對任意的x1,x2∈(0,+∞),且x1≠x2,都有F(x2)-F(x1)>a(x2-x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|1-x|-|2+x|.
(Ⅰ)求f(x)的最大值;
(Ⅱ)|2t-1|≥f(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義min{a,b}=
b,a≥b
a,a<b
,設實數(shù)x,y滿足
|x|≤2
|y|≤2
,則z=min{3x+2y,2x+y}的取值范圍是
 

查看答案和解析>>

同步練習冊答案