某市質(zhì)監(jiān)部門(mén)對(duì)市場(chǎng)上奶粉進(jìn)行質(zhì)量抽檢,現(xiàn)將9個(gè)進(jìn)口品牌奶粉的樣品編號(hào)為1,2,3,4, ,9;6個(gè)國(guó)產(chǎn)品牌奶粉的樣品編號(hào)為10,11,12,15,按進(jìn)口品牌及國(guó)產(chǎn)品牌分層進(jìn)行分層抽樣,從其中抽取5個(gè)樣品進(jìn)行首輪檢驗(yàn),用表示編號(hào)為的樣品首輪同時(shí)被抽到的概率.
(1)求的值;
(2)求所有的的和.

(1);(2)所有的的和為10.

解析試題分析:(1)由分層抽樣可知:首輪檢驗(yàn)從編號(hào)為1,2,3, ,9的洋品牌奶粉的樣品中抽取3個(gè),從編號(hào)為10,11, ,15的國(guó)產(chǎn)品牌奶粉的樣品中抽取2個(gè),從而可求得的值;(2)采用分類(lèi)討論思想,分別求滿(mǎn)足①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí)的的值,最后求和即得所有的的和.
試題解析:(1)由分層抽樣可知:首輪檢驗(yàn)從編號(hào)為1,2,3, ,9的洋品牌奶粉的樣品中抽取3個(gè),從編號(hào)為10,11, ,15的國(guó)產(chǎn)品牌奶粉的樣品中抽取2個(gè),故.   4分
(2)①當(dāng)時(shí),,而這樣的=36個(gè);
②當(dāng)時(shí),,而這樣的=15個(gè);
③當(dāng)時(shí),,而這樣的=54個(gè).
∴所有的的和為×36+×15+×54=10.         13分
考點(diǎn):1.分層抽樣的基本思想;2.古典概型的概率計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
 
 
 
 
 
 
產(chǎn)品編號(hào)
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品,
①用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲乙兩人進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿(mǎn)6局時(shí)停止.設(shè)甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立,比賽停止時(shí)一共已打局:
(1)列出隨機(jī)變量的分布列;
(2)求的期望值E

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

月“神舟 ”發(fā)射成功.這次發(fā)射過(guò)程共有四個(gè)值得關(guān)注的環(huán)節(jié),即發(fā)射、實(shí)驗(yàn)、授課、返回.據(jù)統(tǒng)計(jì),由于時(shí)間關(guān)系,某班每位同學(xué)收看這四個(gè)環(huán)節(jié)的直播的概率分別為、、,并且各個(gè)環(huán)節(jié)的直播收看互不影響.
(1)現(xiàn)有該班甲、乙、丙三名同學(xué),求這名同學(xué)至少有名同學(xué)收看發(fā)射直播的概率;
(2)若用表示該班某一位同學(xué)收看的環(huán)節(jié)數(shù),求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

每年的3月12日,是中國(guó)的植樹(shù)節(jié).林管部門(mén)在植樹(shù)前,為保證樹(shù)苗的質(zhì)量,都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,規(guī)定高于128厘米的樹(shù)苗為“良種樹(shù)苗”,測(cè)得高度如下(單位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根據(jù)抽測(cè)結(jié)果,畫(huà)出甲、乙兩種樹(shù)苗高度的莖葉圖,并根據(jù)你填寫(xiě)的莖葉圖,對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫(xiě)出對(duì)兩種樹(shù)苗高度的統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹(shù)苗高度平均值為,將這10株樹(shù)苗的高度依次輸入按程序框圖進(jìn)行運(yùn)算(如圖),問(wèn)輸出的S大小為多少?并說(shuō)明S的統(tǒng)計(jì)學(xué)意義;

(3)若小王在甲種樹(shù)苗中隨機(jī)領(lǐng)取了5株進(jìn)行種植,用樣本的頻率分布估計(jì)總體分布,求小王領(lǐng)取到的“良種樹(shù)苗”的株數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A,B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對(duì)比試驗(yàn).每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效.若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠的只數(shù)比服用B有效的只數(shù)多,就稱(chēng)該試驗(yàn)組為甲類(lèi)組.設(shè)每只小白鼠服用A有效的概率為,服用B有效的概率為.
(1)求一個(gè)試驗(yàn)組為甲類(lèi)組的概率;
(2)觀察三個(gè)試驗(yàn)組,用X表示這三個(gè)試驗(yàn)組中甲類(lèi)組的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

假設(shè)某班級(jí)教室共有4扇窗戶(hù),在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶(hù)或被敞開(kāi)或被關(guān)閉,且概率均為0.5.記此時(shí)教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為X.
(1)求X的分布列;
(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶(hù)被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶(hù)全部敞開(kāi),否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開(kāi)的窗戶(hù)個(gè)數(shù)為Y,求Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,,點(diǎn)的坐標(biāo)為.
(1)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率;
(2)求當(dāng)時(shí),點(diǎn)滿(mǎn)足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a、b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒(méi)有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案