數(shù)列{an}中,是等差數(shù)列,則a11=   
【答案】分析:設(shè)數(shù)列的公差為d,根據(jù)等差數(shù)列的性質(zhì),求出d,在根據(jù)等差數(shù)列的性質(zhì),即可求出a11
解答:解:設(shè)數(shù)列的公差為d
∵數(shù)列{an}中,是等差數(shù)列

將a3=2,a7=1代入得:d=

∴a11=
故答案為:
點(diǎn)評(píng):本題從等差數(shù)列的性質(zhì)出發(fā),避免了從首相入手的常規(guī)解法,起到簡(jiǎn)化問(wèn)題的作用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
(1)數(shù)列{(-1)n}是等方差數(shù)列;
(2)數(shù)列{an}是等方差數(shù)列,則數(shù)列{an2}也是等方差數(shù)列;
(3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)列;
(4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k為常數(shù),k∈N*)也是等方差數(shù)列.
則正確命題序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、如果一個(gè)數(shù)列{an}滿足an+1+an=h(h為常數(shù),n∈N*),則稱數(shù)列{an}為等和數(shù)列,h為公和,Sn是其前 n項(xiàng)和,已知等和數(shù)列{an}中,a1=1,h=-3,則S2007等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,若an2-an-12=p,(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的有關(guān)判斷:
①若{an}是“等方差數(shù)列”,則數(shù)列{
1an
}
是等差數(shù)列;
②{(-2)n}是“等方差數(shù)列”;
③若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N*,k為常數(shù))也是“等方差數(shù)列”;
④若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確的命題為
③④
③④
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱為數(shù)列{an}的一個(gè)子數(shù)列,設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1,公差為d(d≠0)的無(wú)窮等差數(shù)列.
(1)若a1,a2,a5為公比為q的等比數(shù)列,求公比q的值;
(2)若a1=1,d=2,請(qǐng)寫出一個(gè)數(shù)列{an}的無(wú)窮等比子數(shù)列{bn};
(3)若a1=7d,{cn}是數(shù)列{an}的一個(gè)無(wú)窮子數(shù)列,當(dāng)c1=a2,c2=a6時(shí),試判斷{cn}能否是{an}的無(wú)窮等比子數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義等積數(shù)列:在一個(gè)數(shù)列中,若每一項(xiàng)與它的后一項(xiàng)的積是同一常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)數(shù)叫做公積.已知等積數(shù)列{an}中,a1=2,公積為5,當(dāng)n為奇數(shù)時(shí),這個(gè)數(shù)列的前n項(xiàng)和Sn=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案