【題目】已知定義域為{x|x≠0}的偶函數(shù)f(x),其導函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>﹣2f(x),若g(x)=x2f(x),則不等式g(x)<g(1﹣x)的解集是( )
A.( ,+∞)
B.(﹣∞, )
C.(﹣∞,0)∪(0, )
D.(0, )
【答案】C
【解析】解:∵f(x)是定義域為{x|x≠0}的偶函數(shù),
∴f(﹣x)=f(x).
對任意正實數(shù)x滿足xf′(x)>﹣2f(x),
∴xf′(x)+2f(x)>0,
∵g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x)>0.
∴函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
∴g(x)在(﹣∞,0)遞減;
由不等式g(x)<g(1﹣x),
∴ 或 ,
解得:0<x< ,或x<0
∴不等式g(x)<g(1﹣x)的解集為:{x|0<x< 或x<0}.
故選:C.
【考點精析】利用導數(shù)的幾何意義和利用導數(shù)研究函數(shù)的單調(diào)性對題目進行判斷即可得到答案,需要熟知通過圖像,我們可以看出當點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導數(shù)就是切線PT的斜率k,即;一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}滿足an+1+an=104n﹣1(n∈N*),數(shù)列{bn}的前n項和為Sn , 且bn=log2an .
(1)求bn , Sn;
(2)設cn= ,證明: + +…+ < Sn+1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當時, ;
(3)確定實數(shù)的值,使得存在當時,恒有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(1)求的值;
(2)畫出圖像,并寫出單調(diào)遞增區(qū)間(不需要說明理由);
(3)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面AA1B1B水平放置,如圖所示,點D、E、F、G分別在棱CA、CB、C1B1、C1A1上,水面恰好過點D,E,F,C,且CD=2
(1)證明:DE∥AB;
(Ⅱ)若底面ABC水平放置時,求水面的高
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的圖像與軸的交點為,在軸右側(cè)的第一個最高點和第一個與軸交點分別為
(1)求的解析式;
(2)將函數(shù)圖像上所有點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),再將所得圖像沿軸正方向平移個單位,得到函數(shù)的圖像,求的解析式;
(3)在(2)的條件下求函數(shù)在上的值域。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com