分析 (1)利用數(shù)學(xué)歸納法證明,當(dāng)n=1時(shí)結(jié)論成立,第二步假設(shè)n=k時(shí)結(jié)論成立,證明n=k+1時(shí)不等式也成立即可;結(jié)合結(jié)論,可利用作商比較法證明.
(1)利用(1)的結(jié)論逐步放縮即可證明
解答 證明:(1)證明:用數(shù)學(xué)歸納法證明,
①當(dāng)n=1,a1=a>2,結(jié)論成立.
②假設(shè)當(dāng)n=k(k≥2)時(shí)結(jié)論成立,即ak>2,
那么當(dāng)n=k+1時(shí),a k+1-2=$\frac{{a}_{k}^{2}}{2({a}_{k}-1)}$-2=$\frac{{a}_{k}^{2}-4{a}_{k}+4}{2({a}_{k}-1)}$=$\frac{({a}_{k}-2)^{2}}{2({a}_{k}-1)}$>0,即ak+1>2,
由①②可知,n∈N*時(shí)都有an>2.
當(dāng)an>2時(shí),$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}}{2({a}_{n}-1)}$=$\frac{1}{2(1-\frac{1}{{a}_{n}})}$<$\frac{1}{2(1-\frac{1}{2})}$=1,所以an+1<an.
(2)由(1)得an-2=$\frac{{a}_{n-1}-2}{2}$•$\frac{{a}_{n-1}-2}{{a}_{n-1}-1}$<$\frac{{a}_{n-1}-2}{2}$,
∴an-2<$\frac{{a}_{n-1}-2}{2}$<$\frac{{a}_{n-2}-2}{{2}^{2}}$<…<$\frac{{a}_{1}-2}{{2}^{n-1}}$,n≥2,
∴(a1-2)+(a2-2)+…+an-2<(3-2)(1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$)=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2(1-$\frac{1}{{2}^{n}}$)=2,
∴a1+a2+a3+…+an<2(n+1)
點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法證明不等式的應(yīng)用和放縮法證明不等式,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 27 | C. | 32 | D. | 103 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)>0恒成立 | B. | f(x)<0 | ||
C. | 當(dāng)且僅當(dāng)x∈(-∞,1),f(x)<0 | D. | 當(dāng)且僅當(dāng)x∈(1,+∞),f(x)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 39 | B. | 21 | C. | 39或21 | D. | 21或36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤4} | B. | {x|-1≤x≤4} | C. | {x|-1≤x≤0} | D. | {x|0<x≤4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com