在R上的可導(dǎo)函數(shù)f(x)=
1
3
x3+
1
2
ax2+x,當(dāng)x∈(0,1)取得極大值,當(dāng)x∈(1,2)取得極小值,則a的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:據(jù)極大值點(diǎn)左邊導(dǎo)數(shù)為正右邊導(dǎo)數(shù)為負(fù),極小值點(diǎn)左邊導(dǎo)數(shù)為負(fù)右邊導(dǎo)數(shù)為正得不等式組,求出即可.
解答: 解:∵函數(shù)f(x)=
1
3
x3+
1
2
ax2+x,
∴f′x)=x2+ax+1,
又當(dāng)x∈(0,1)取得極大值,當(dāng)x∈(1,2)取得極小值,
∴f′(0)>0,f′(1)<0,f′(2)>0,
1+a+1<0
4+2a+1>0
,
解得:-2.5<a<-2,
故答案為:(-2.5,-2).
點(diǎn)評(píng):本題考查了函數(shù)極值存在條件及解不等式問題,本題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C方程:
x2
a2
+
y2
b2
=1(a>b>0),其長(zhǎng)軸長(zhǎng)為4,M(x0,y0)是橢圓C上任意一點(diǎn),F(xiàn)(c,0)是橢圓的右焦點(diǎn).
(1)證明:|MF|=2-
c
2
x0;
(2)不過焦點(diǎn)F的直線l與圓x2+y2=b2相切于點(diǎn)Q,并與橢圓C交于A,B兩點(diǎn),且直線l和切點(diǎn)Q都在y軸的右側(cè),則△ABF的周長(zhǎng)是否為定值,若是求出該定值,不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩運(yùn)動(dòng)員分別對(duì)一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:
(1)兩人都射中的概率;
(2)兩人中恰有一人射中的概率;
(3)兩人中至少有一人射中的概率;
(4)兩人中至多有一人射中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司為了了解員工們的健康狀況,隨機(jī)抽取了部分員工作為樣本,測(cè)量他們的體重(單位:公斤),體重的分組區(qū)間為[50,55),[55,60),[60,65),[65,70),[70,75],由此得到樣本的頻率分布直方圖,如圖所示.根據(jù)頻率分布直方圖,估計(jì)該公司員工體重的眾數(shù)是
 
;從這部分員工中隨機(jī)抽取1位員工,則該員工的體重在[65,75]的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x3-3x-t|(x∈[-2,2])的最大值為
5
2
,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+2),則f′(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B分別是橢圓
x2
36
+
y2
9
=1的右頂點(diǎn)和上頂點(diǎn),動(dòng)點(diǎn)C在該橢圓上運(yùn)動(dòng),則△ABC的重心G的軌跡的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離d=
|Ax0+By0+C|
A2+B2
;類似地,在空間直角坐標(biāo)系中,點(diǎn)P(x0,y0,z0)到直線Ax+By+Cz+D=0的距離d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,“sinA>
1
2
”是“A>
π
6
”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案