當(dāng)0<x<
π
4
時,函數(shù)f(x)=
sinxcosx-1
cos2x
的最大值是
 
考點:函數(shù)最值的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)1的代換,利用換元法將函數(shù)進行轉(zhuǎn)化,利用一元二次函數(shù)的性質(zhì)進行求解.
解答: 解:f(x)=
sinxcosx-1
cos2x
=
sinxcosx-sin2x-cos2x
cos2x
=tanx-(tanx)2-1,
設(shè)t=tanx,
∵0<x<
π
4
,∴0<tanx<1,
即0<t<1,
則函數(shù)f(x)等價為y=-t2+t-1=-(t-
1
2
2-
3
4
,
∴當(dāng)t=
1
2
時,函數(shù)取得最大-
3
4

故答案為:-
3
4
點評:本題主要考查函數(shù)最值的求解,根據(jù)條件利用換元法結(jié)合一元二次函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos510°的值為( 。
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+2,x∈[t,t+1]的最小值為g(t)
(1)求函數(shù)g(t)的解析式.
(2)若對任意的t,f(x)-m>0在x∈[t,t+1]上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=3,an-1-an=
1
3
nan-1an,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以一個直角分別為3和4得直角三角形的直角頂點為原點,兩直角邊分別為x軸建立平面直角坐標(biāo)系,用斜二測畫法畫出其直觀圖,則直觀圖得面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰△ABC中,若一腰的兩個端點分別為A(4,2),B(-2,0),A為頂點,求另一個腰的一個端點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
2x+3y-4≤0
x-2y-2≤0
4x-y+6≥0
,則|x|+y的取值范圍為( 。
A、[2,3]
B、[0,3]
C、[-1,2]
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在菱形ABCD中,∠BAD=120°,則下列說法中錯誤說法的個數(shù)是( 。
①圖中所標(biāo)出的向量中與
AB
相等的向量只有1個(不含
AB
本身)
②圖中所標(biāo)出的向量與
AB
的模相等的向量有4個(不含
AB
本身)
BD
的長度恰為
DA
長度的
3

CB
DA
不共線.
A、4B、3C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象如圖所示,根據(jù)圖象回答下列問題:
(Ⅰ)函數(shù)y=f(x)的定義域可能是什么?
(Ⅱ)函數(shù)y=f(x)的值域可能是什么?
(Ⅲ)若關(guān)于x的方程f(x)=a有兩解,那么實數(shù)a的取值范圍是什么?

查看答案和解析>>

同步練習(xí)冊答案