【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為 ,若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心,3為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.

【答案】解:(Ⅰ)直線l的參數(shù)方程為 (t為參數(shù)),(答案不唯一,可酌情給分) 圓的極坐標(biāo)方程為ρ=6sinθ.
(Ⅱ)把 代入x2+(y﹣3)2=9,得
設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為t1 , t2
∴t1t2=﹣7,則|PA|=|t1|,|PB|=|t2|,∴|PA||PB|=7.
【解析】(I)根據(jù)題意直接求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.(II)把 代入x2+(y﹣3)2=9,利用參數(shù)的幾何意義,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn) ,向量 =(0,1),θn是向量 的夾角,則使得 恒成立的實(shí) 數(shù)t的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求函數(shù)的值域;

(Ⅱ)若函數(shù)單調(diào),求實(shí)數(shù)的取值范圍;

是函數(shù)為實(shí)數(shù))的其中兩個(gè)零點(diǎn),且,求當(dāng)變化時(shí), 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, , 平面ABCD⊥平面ABFE.

(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出30個(gè)數(shù):1,2,4,7,,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,以此類推,要計(jì)算這30個(gè)數(shù)的和,現(xiàn)已給出了解決該問題的算法框圖(如圖所示).

(1)請(qǐng)?jiān)趫D中處理框內(nèi)①處和判斷框中的②處填上合適的語句,使之能完成該題算法功能;

(2)根據(jù)算法框圖寫出算法語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量 滿足 , , .若 ,則( )
A. ,
B. ,
C.
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列滿足, ,其中.

(1) 求數(shù)列的通項(xiàng)公式;

(2) 設(shè)數(shù)列{bn}滿足 bn=,是否存在正整數(shù),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.

(3) ,記數(shù)列{cn}的前項(xiàng)和為,其中,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 底面 , 是直角梯形, , ,且 , 的中點(diǎn).

(1)求證:平面 平面
(2)若二面角 的余弦值為 ,求直線 與平面 所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案