【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),M為橢圓上除長(zhǎng)軸端點(diǎn)外的任意一點(diǎn),且△MF1F2的周長(zhǎng)為4+2
(1)求橢圓C的方程;
(2)過點(diǎn)D(0,﹣2)作直線l與橢圓C交于A、B兩點(diǎn),點(diǎn)N滿足 (O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)直線l的方程.

【答案】
(1)解:由離心率為e= = ,①

則△MF1F2的周長(zhǎng)l=2a+2c=4+2 ,則a+c=2+ ,②

則a=2,c= ,

則b2=a2﹣c2=1,

∴橢圓C的方程


(2)解:由 ,則四邊形OANB為平行四邊形,

當(dāng)直線l的斜率不存在時(shí)顯然不符合題意;

當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=kx﹣2,l與橢圓交于A(x1,y1),B(x2,y2)兩點(diǎn),由 得(1+4k2)x2﹣16kx+12=0

由△=162k2﹣48(1+4k2)>0,得k2 ∴x1+x2= ,x1x2=

∵SOAB= 丨OD丨丨x1﹣x2丨=丨x1﹣x2丨,

∴四邊形OANB面積S=2SOAB=2丨x1﹣x2丨=2

=2 ,

=2 ,

=8

令4k2﹣3=t,則4k2=t+3(由上可知t>0),S=8 =8 ≤8 =8 =2,

當(dāng)且僅當(dāng)t=4,即k2= 時(shí)取等號(hào);

∴當(dāng)k=± ,平行四邊形OANB面積的最大值為2,

此時(shí)直線l的方程為y=± x﹣2


【解析】(1)利用橢圓的離心率公式及焦點(diǎn)三角形的周長(zhǎng)公式,求得a和c的值,b2=a2﹣c2=1,即可求得橢圓方程;(2)確定四邊形OANB為平行四邊形,則SOANB=2SOAB , 表示出面積,利用基本不等式,即可求得最大值,從而可得直線l的方程.
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過定點(diǎn)P(1,1),且傾斜角為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)若 ,求函數(shù) 的極小值;
(2)設(shè)函數(shù) ,求函數(shù) 的單調(diào)區(qū)間;
(3)若在區(qū)間 上存在一點(diǎn) ,使得 成立,求 的取值范圍,(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在 軸上,離心率為 ,且經(jīng)過點(diǎn) ,直線 交橢圓于 , 兩不同的點(diǎn).
(1)求橢圓的方程;
(2)若直線 不過點(diǎn) ,求證:直線 , 軸圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 為參數(shù)),圓 ( 為參數(shù)),
(Ⅰ)當(dāng) 時(shí),求 的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn) 的垂線,垂足為 , 的中點(diǎn),當(dāng) 變化時(shí),求 點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出30個(gè)數(shù):1,2,4,7,,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,以此類推,要計(jì)算這30個(gè)數(shù)的和,現(xiàn)已給出了解決該問題的算法框圖(如圖所示).

(1)請(qǐng)?jiān)趫D中處理框內(nèi)①處和判斷框中的②處填上合適的語句,使之能完成該題算法功能;

(2)根據(jù)算法框圖寫出算法語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,sin(A﹣B)=sinC﹣sinB,D是邊BC的一個(gè)三等分點(diǎn)(靠近點(diǎn)B),記 ,則當(dāng)λ取最大值時(shí),tan∠ACD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對(duì)新款夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A

B

C

售價(jià)x(元)

80

86

82

88

84

90

銷量y(件)

88

78

85

75

82

66


(1)分別以三家連鎖店的平均售價(jià)與平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程 ;
(2)在大量投入市場(chǎng)后,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該新夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元?(保留整數(shù))
附:

查看答案和解析>>

同步練習(xí)冊(cè)答案