【題目】已知某三棱錐的三視圖如圖所示,圖中的3個直角三角形的直角邊長度已經(jīng)標出,則在該三棱錐中,最短的棱和最長的棱所在直線的成角余弦值為(
A.
B.
C.
D.

【答案】A
【解析】解:由三視圖還原原幾何體如圖:
幾何體是三棱錐A﹣BCD,滿足面ACD⊥面BCD,且AD⊥CD,BC⊥CD.
最短棱為CD,最長棱為AB.
在平面BCD內,過B作BE∥CD,且BE=CD,
∴四邊形BEDC為正方形,可得AE=2 ,
在Rt△AEB中,求得AB= ,
∴cos∠ABE=
即最短的棱和最長的棱所在直線的成角余弦值為
故選:A.
【考點精析】利用由三視圖求面積、體積對題目進行判斷即可得到答案,需要熟知求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2(lga2)xlgbf(1)=2,當x∈Rf(x)≥2x恒成立,求實數(shù)a的值,并求此時f(x)的最小值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) fx)是定義在 R上的偶函數(shù),當 x≥0 時,fx)=x2+ax+b 的部分圖象如圖所示:

1)求 fx)的解析式;

2)在網(wǎng)格上將 fx)的圖象補充完整,并根據(jù) fx)圖象寫出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足.

(1)求數(shù)列、的通項公式;

(2),求數(shù)列的前項和;

(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ

)把C1的參數(shù)方程化為極坐標方程;

)求C1C2交點的極坐標(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家研究某位學生的學習情況發(fā)現(xiàn):若這位學生剛學完的知識存留量記為1,則x天后的存留量;若在tt4)天時進行第一次復習,則此時知識存留量比未復習情況下增加一倍(復習時間忽略不計),其后存留量y2隨時間變化的曲線恰為直線的一部分,其斜率為a0),存留量隨時間變化的曲線如圖所示.當進行第一次復習后的存留量與不復習的存留量相差最大時,則稱此時刻為二次復習最佳時機點

1)若a=-1,t5二次復習最佳時機點;

2)若出現(xiàn)了二次復習最佳時機點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準線相切的圓的標準方程為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案