三棱錐P―ABC,截面A1B1C1//底面ABC,∠BAC=90°,PA⊥底面ABC,A1A=

 (1)求證:平面A1AD⊥平面BCC1B1;   (2)求二面角A―CC1―B的大小。

解:(1)

A到BC距離

令d=AD′,BD′=又BD=

與D重合

(2)建系:A(0,0,0),AB為x軸,AC為y軸,AP為z軸,

則B(,0,0),C(0,2,0),A1(0,0,),C(0,1,

平面ACC1的法向量(1,0,0)

在平面BCC1內(nèi),

設(shè)法向量為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為
3
的球內(nèi)有一個(gè)內(nèi)接正三棱錐P-ABC,過(guò)球心O及一側(cè)棱PA作截面截三棱錐及球面,所得截面如右圖所示,則此三棱錐的側(cè)面積為
9
4
15
9
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐P-ABC,底面ABC為邊長(zhǎng)為2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點(diǎn),AD=2DP,O為底面三角形中心.
(Ⅰ)求證DO∥面PBC;
(Ⅱ)求證:BD⊥AC;
(Ⅲ)求面DOB截三棱錐P-ABC所得的較大幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC的側(cè)面PAC是底角為45°的等腰三角形,PA=PC,且該側(cè)面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求證:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若該三棱錐被平行于底面的平面所截,得到一個(gè)幾何體ABC-A1B1C1,求幾何體ABC-A1B1C1的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P-ABC中,AB=
2
,PA=
3
+1
,過(guò)點(diǎn)A作截面交PB,PC分別于D,E,則截面△ADE的周長(zhǎng)的最小值是
6
+
2
6
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知三棱錐P-ABC的側(cè)面PAC是底角為45°的等腰三角形,PA=PC,且該側(cè)面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求證:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若該三棱錐被平行于底面的平面所截,得到一個(gè)幾何體ABC-A1B1C1,求幾何體ABC-A1B1C1的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案