用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
++
1
2n-1
<n(n∈N+,n>1)
,第二步證明從k到k+1,左端增加的項(xiàng)數(shù)為( 。
A、2k-1
B、2k
C、2k-1
D、2k+1
分析:當(dāng)n=k時,寫出左端,并當(dāng)n=k+1時,寫出左端,兩者比較,關(guān)鍵是最后一項(xiàng)和增加的第一項(xiàng)的關(guān)系.
解答:解:當(dāng)n=k時,左端=1+
1
2
+
1
3
+…+
1
2k-1
,
那么當(dāng)n=k+1時  左端=1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+…+
1
2k+1-1

=1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+
1
2k+1
+…+   
1
2k+2k-1

∴左端增加的項(xiàng)為
1
2k
+
1
2k+1
+…+
1
2k+2k-1
,所以項(xiàng)數(shù)為:2k
故選B.
點(diǎn)評:此題考查數(shù)學(xué)歸納法證明,其中關(guān)鍵一步就是從k到k+1,是學(xué)習(xí)中的難點(diǎn),也是學(xué)習(xí)中重點(diǎn),解答過程中關(guān)鍵是注意最后一項(xiàng)與增添的第一項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明1+2+3+…+n2=
n4+n2
2
,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上(  )
A、k2+1
B、(k+1)2
C、
(k+1)4+(k+1)2
2
D、(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
+…+
1
2n-1
<n
(n∈N+,n>1)時,第一步應(yīng)驗(yàn)證不等式( 。
A、1+
1
2
<2
B、1+
1
2
+
1
3
<2
C、1+
1
2
+
1
3
<3
D、1+
1
2
+
1
3
+
1
4
<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法正確的是
③④
③④

①lg9•lg11>1.
②用數(shù)學(xué)歸納法證明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在驗(yàn)證n=1時,左邊=1.
③已知f(x)是R上的增函數(shù),a,b∈R,則f(a)+f(b)≥f(-a)+f(-b)的充要條件是a+b≥0.
④用分析法證明不等式的思維是從要證的不等式出發(fā),逐步尋找使它成立的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明“1+
1
2
+
1
22
+…+
1
22n
=2-
1
22n
(n∈N*)
”在第一步驗(yàn)證取初始值時,左邊計(jì)算的結(jié)果是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明1+x+x2+…+xn+1=
1-xn+2
1-x
(x≠1)
,在驗(yàn)證當(dāng)n=1等式成立時,其左邊為( 。

查看答案和解析>>

同步練習(xí)冊答案