【題目】設,為奇函數.
(1)求的值;
(2)若對任意恒有成立,求實數的取值范圍.
【答案】(1);(2).
【解析】
(1)由求出實數的值,求出函數的解析式,然后利用奇偶性的定義驗證函數為奇函數;
(2)分析出函數為增函數,結合奇函數的性質,由得出,由單調性得出對任意的恒成立,構造函數,對該二次函數的對稱軸與區(qū)間的位置關系進行分類討論,分析函數在區(qū)間上的單調性,得出最小值,然后解不等式可得出實數的取值范圍.
(1)因為函數為奇函數,且定義域為,故,所以.
故,所以,此時,,定義域為,關于原點對稱.
,則函數為奇函數;
(2)由(1)得,
則函數在上為減函數,由于函數為奇函數,
由,可得,則有.
,則該不等式對任意的恒成立,
構造函數,其中,則.
二次函數的圖象開口向上,對稱軸為直線,下面分三種情況討論:
①當時,即時,函數在上單調遞增,
則函數的最小值為恒成立,,此時;
②當時,即時,函數在上單調遞減,
則函數的最小值為,解得,此時;
③當時,即時,函數在上單調遞減,在上單調遞增,則函數的最小值為,整理得,
解得,此時.
綜上所述,實數的取值范圍是.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線的極坐標方程.以極點為原點,極軸為軸非負半軸建立平面直角坐標系,且在兩坐標系中取相同的長度單位,直線的參數方程為(為參數).
(1)寫出曲線的參數方程和直線的普通方程;
(2)過曲線上任意一點作與直線相交的直線,該直線與直線所成的銳角為,設交點為,求的最大值和最小值,并求出取得最大值和最小值時點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線過點,圓,直線與圓交于不同兩點.
(Ⅰ)求直線的斜率的取值范圍;
(Ⅱ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:經過點(,),且兩個焦點,的坐標依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設,是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,霧霾日趨嚴重,霧霾的工作、生活受到了嚴重的影響,如何改善空氣質量已成為當今的熱點問題,某空氣凈化器制造廠,決定投入生產某型號的空氣凈化器,根據以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律,每生產該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產1百臺的生產成本為10萬元(總成本=固定成本+生產成本),銷售收入(萬元)滿足,假定該產品銷售平衡(即生產的產品都能賣掉),根據上述統(tǒng)計規(guī)律,請完成下列問題:
(1)求利潤函數的解析式(利潤=銷售收入-總成本);
(2)工廠生產多少百臺產品時,可使利潤最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
【答案】C
【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;
若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;
若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;
若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;
因此乙和丁不可能同時獲獎,選C.
【題型】單選題
【結束】
12
【題目】已知當時,關于的方程有唯一實數解,則值所在的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調研分析發(fā)現養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足,N=a+20.設甲合作社的投入為x(單位:萬元),兩個合作社的總收益為f(x)(單位:萬元).
(1)當甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大,最大總收益為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com