【題目】已知函數(shù),(其中,,)的圖象的兩條相鄰對(duì)稱軸之間的距離為,且圖象上一個(gè)最低點(diǎn)為.

(1)求函數(shù)的解析式;

(2)當(dāng)時(shí),求函數(shù)的值域;

(3)若方程上有兩個(gè)不相等的實(shí)數(shù)根,求的值.

【答案】(1);(2)值域?yàn)?/span>;(3).

【解析】

(1)根據(jù)圖象的最低點(diǎn)得到由兩相鄰對(duì)稱軸間的距離可得周期,進(jìn)而得到再根據(jù)代點(diǎn)法得到,于是可得解析式.(2),

,然后結(jié)合正弦函數(shù)的圖象可求得值域.(3)根據(jù)方程上有兩個(gè)不相等的實(shí)數(shù)根,可得,于是,結(jié)合三角變換可得所求的函數(shù)值

(1)由函數(shù)圖象的最低點(diǎn)為

由圖象的兩條相鄰對(duì)稱軸之間的距離為,

,

又點(diǎn)在函數(shù)的圖象上,

,

,

,

,

(2),

,

當(dāng),即時(shí),取得最大值1;

當(dāng),即時(shí),取得最小值.

故當(dāng)時(shí),函數(shù)的值域?yàn)?/span>

(3)

,

又方程上有兩個(gè)不相等的實(shí)數(shù)根

,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有偶數(shù)個(gè)球,其中紅球、黑球各占一半.甲、乙、丙是三個(gè)空盒.每次從袋中任意取出兩個(gè)球,將其中一個(gè)球放入甲盒,如果這個(gè)球是紅球,就將另一個(gè)球放入乙盒,否則就放入丙盒.重復(fù)上述過(guò)程,直到袋中所有球都被放入盒中,則( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球
D.乙盒中黑球與丙盒中紅球一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)A.【選修4—1幾何證明選講】
如圖,在△ABC中,∠ABC=90°,BDACD為垂足,EBC的中點(diǎn),求證:∠EDC=∠ABD.

(2)B.【選修4—2:矩陣與變換】
已知矩陣A= 矩陣B的逆矩陣B1= ,求矩陣AB.
(3)【選修4—4:坐標(biāo)系與參數(shù)方程】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 t為參數(shù)),橢圓C的參數(shù)方程為 為參數(shù)).設(shè)直線l與橢圓C相交于A , B兩點(diǎn),求線段AB的長(zhǎng).
(4)D. 設(shè)a>0,|x﹣1|< ,|y﹣2|< ,求證:|2x+y﹣4|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進(jìn)行檢測(cè).

地區(qū)




數(shù)量

50

150

100

1)求這6件樣品中來(lái)自各地區(qū)商品的數(shù)量;

2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長(zhǎng)方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為4000元.

(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;

(Ⅱ)求該博物館支付總費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC為正三角形,A1A=AB=6,D為AC中點(diǎn).

(1)求三棱錐C1﹣BCD的體積;

(2)求證:平面BC1D⊥平面ACC1A1;

(3)求證:直線AB1∥平面BC1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=2,則t的最大值為(
A.11
B.2057
C.2058
D.2059

查看答案和解析>>

同步練習(xí)冊(cè)答案