【題目】在三棱柱中,,,則所成角的余弦值為( )

A. B. C. D.

【答案】C

【解析】

連結A1C,交AC1于點E,取BC的中點D,連結AD、DE.證出DE是△A1BC的中位線,得DEA1B,因此AE、ED所成的銳角或直角就是A1BAC1所成的角.然后利用題中數(shù)據在△AED中分別算出邊AE、ED、AD的長,根據余弦定理列式,即可算出異面直線A1BAC1所成角的余弦值.

連結A1C,交AC1于點E,取BC的中點D,連結AD、DE

∵四邊形AA1C1C是平行四邊形,∴EA1C的中點

DBC的中點,∴DE是△A1BC的中位線,可得DEA1B,

因此,∠AED(或其補角)就是異面直線A1BAC1所成的角.

ABACAA1=2,∵∠A1AB=60°,可得A1B,A1BA=90°

∴△A1BA是直角三角形,得DEA1B

同理,直角A1CA中, AE,

又∵∠BAC=90°,ABAC=2,DBC中點,

ADBC

由此可得△ADE中,cos∠AED

即異面直線A1BAC1所成角的余弦值為

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,平面平面,的中點.

1)求證://平面;

2)求點到面的距離

3)求二面角平面角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校寒假行政值班安排,要求每天安排一名行政人員值日,現(xiàn)從包含甲、乙兩人的七名行政人員中選四人負責四天的輪班值日,在下列條件下,各有多少種不同的安排方法?

1)甲、乙兩人都被選中,且安排在前兩天值日;

2)甲、乙兩人只有一人被選中,且不能安排在后兩天值日.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的三棱臺中,分別為的中點,

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.如圖,在四棱錐中,底面是正方形,側棱,的中點,于點

1)證明//平面

2)證明平面;

3)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

美國華爾街的次貸危機引起的金融風暴席卷全球,低迷的市場造成產品銷售越來越難,為此某廠家舉行大型的促銷活動,經測算該產品的銷售量P萬件(生產量與銷售量相等)與促銷費用萬元滿足,已知生產該產品還需投入成本萬元(不含促銷費用),每件產品的銷售價格定為.

)將該產品的利潤萬元表示為促銷費用萬元的函數(shù)(利潤=總售價-成本-促銷費);

)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①相關指數(shù)越小,則殘差平方和越小,模型的擬合效果越好.

②在的列聯(lián)表中我們可以通過等高條形圖直觀判斷兩個變量是否有關.

③殘差點比較均勻地落在水平帶狀區(qū)域內,帶狀區(qū)域越窄,說明模型擬合精度越高.

④兩個隨機變量相關性越強,則相關系數(shù)r越接近1.

其中正確命題的個數(shù)為( .

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地硏學旅行的情況,隨機調查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據這項調查,估計該學校到過中共一大會址研學旅行的學生大約有( )人

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是直角梯形, ,又,直線與直線所成的角為

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案