精英家教網 > 高中數學 > 題目詳情

在四面體ABCD中,AD=a,BC=b,AD與BC所成的角為,它們之間的距離為d,求四面體的體積.

答案:
解析:

(1)解:在BCD所在平面內作平行四邊形BCDE,則BC=DE=b.

∠EDA=

∵BC∥DE,

∴BC∥平面ADE.

∴BC與平面ADE間的距離為d.

∴B到平面ADE的距離為d.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在四面體ABCD中,設AB=1,CD=2且AB⊥CD,若異面直線AB與CD間的距離為2,則四面體ABCD的體積為( �。�
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網在四面體ABCD中,M、N分別是面△ACD、△BCD的重心,則四面體的四個面中與MN平行的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

將圖1中的等腰直角三角形ABC沿斜邊BC的中線折起得到四面體ABCD(如圖2),則在四面體ABCD中,AD與BC的位置關系是( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四面體ABCD中,截面EFGH平行于對棱AB和CD,且FG⊥GH,試問截面在什么位置時其截面面積最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外接球的半徑為
3
3

查看答案和解析>>

同步練習冊答案