已知函數(shù)(均為正常數(shù)),設函數(shù)在處有極值.
(1)若對任意的,不等式總成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.
(1);(2).
解析試題分析:本題主要考查導數(shù)的應用、不等式、三角函數(shù)等基礎知識,考查思維能力、運算能力、分析問題與解決問題的能力,考查函數(shù)思想、轉(zhuǎn)化思想等數(shù)學思想方法.第一問,對求導,因為在有極值,所以是的根,列出表達式,求出,不等式恒成立等價于恒成立,所以下面的主要任務是求的最大值,對求導,利用三角公式化簡,求的最值,判斷的正負,從而判斷的單調(diào)性,求出最大值;第二問,由單調(diào)遞增,所以解出的取值范圍,由已知在上單調(diào)遞增,所以得出,利用子集關系列出不等式組,解出.
試題解析:∵,∴,
由題意,得,,解得. 2分
(1)不等式等價于對于一切恒成立. 4分
記
5分
∵,∴,∴,∴,
∴,從而在上是減函數(shù).
∴,于是,故的取值范圍是. 6分
(2),由,得,即
. 7分
∵函數(shù)在區(qū)間上單調(diào)遞增,
∴,
則有,, 9分
即,,
∴只有時,適合題意,故的取值范圍為. 12分
考點:1.導數(shù)的運算;2.兩角和的正弦公式;3.三角函數(shù)的最值;4.恒成立問題;5.利用導數(shù)判斷函數(shù)的單調(diào)性.
科目:高中數(shù)學 來源: 題型:解答題
已知定義在上的函數(shù),其中為常數(shù).
(1)當是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
(3)當時,若,在處取得最大值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設,試問函數(shù)在上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式其中為常數(shù).己知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com