精英家教網 > 高中數學 > 題目詳情
已知f(x)=,且f-1(x-1)的圖象的對稱中心是(0,3),則a的值為(    )

A.                   B.2               C.               D.3

B

解析:f-1(x)=,f-1(x-1)=,其對稱中心是(0,a+1),∴a+1=3a=2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有下列幾個命題:
①函數y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是減函數;
②已知f(x)在R上是增函數,若a+b>0,則有f(a)+f(b)>f(-a)+f(-b);
③已知函數y=f(x)是R上的奇函數,且當x≥0時,f(x)=x(1+
3x
)
,則當x<0時,f(x)=-x(1-
3x
)
;
④已知定義在R上函數f(x)滿足對?x,y∈R,f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,則f(x)是R上的增函數;⑤如果a>1,則函數f(x)=ax-x-a(a>0且a≠1)有兩個零點.
其中正確命題的序號是
 
.(寫出全部正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數,對任意x、y∈R滿足關系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數f(x)、g(x)都是奇函數.
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知函數f(x)=x2,g(x)為一次函數,且為增函數,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函數,且x∈(-∞,0)時,f(x)=x2+2x,求f(x);

(4)某工廠生產一種機器的固定成本為5 000元,且每生產100部,需要增加投入2 500元,對銷售市場進行調查后得知,市場對此產品的需求量為每年500部,已知銷售收入的函數為H(x)=500x-x2,其中x是產品售出的數量,且0≤x≤500.若x為年產量,y表示利潤,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省高三10月階段性測試理科數學試卷 題型:選擇題

已知f(x)=|lgx|,且0<a<b<c,若?f(b)<f(a)<f(c),則下列一定成立的是(    )

A.a<1,b<1,且c>1         B.0<a<1,b>1且c>1

C.b>1,c>1                D. c>1且<a<1,a<b<

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年遼寧省沈陽市四校協作體高三12月月考數學文卷 題型:選擇題

已知f(x),g(x)都是定義在R上的函數,并滿足以下條件:(1)f(x)=2axg(x),(a>0,a1);(2)g(x)0; (3)f(x) g'(x)< f'(x) g(x)且,則a=(    )

A.                B.2                C.               D.2或

 

查看答案和解析>>

同步練習冊答案