△ABC中A,B,C的對邊分別是a,b,c,面積S=
a2+b2-c2
4
,則C的大小是(  )
A、30°B、45°
C、90°D、135°
考點:余弦定理
專題:三角函數(shù)的求值
分析:已知等式左邊利用三角形面積公式化簡,右邊利用余弦定理化簡,整理求出
解答: 解:∵△ABC中,S=
1
2
absinC,a2+b2-c2=2abcosC,且S=
a2+b2-c2
4

1
2
absinC=
1
2
abcosC,即tanC=1,
則C=45°.
故選:B.
點評:此題考查了余弦定理,以及三角形的面積公式,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

假設若干個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這些函數(shù)為“互為生成函數(shù)”.給出下列函數(shù):
①f(x)=
2
sin(x-
π
4
);
②f(x)=
2
(sinx+cosx);
③f(x)=
2
sinx+1;
④f(x)=sinx.
則其中屬于“互為生成函數(shù)”的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
ex
-
a
x
(a∈R).若存在實數(shù)m,n,使得f(x)≥0的解集恰為[m,n],則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則
f′(-3)
f′(1)
=( 。
A、-1B、2C、-5D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),當x∈[0,+∞)時,f(x)=x+sinx,當x∈(-∞,0],f(x)解析式為( 。
A、-x-sinx
B、x+sinx
C、-x+sinx
D、x-xsin

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<4.5,當x2(9-2x)取得最大值時,x取何值( 。
A、1B、2C、3D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于
x
的方程有3(
a
+
x
)=
x
,則
x
=(  )
A、
3
2
a
B、-
3
2
a
C、
2
3
a
D、無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集 U={1,2,3,4,5,6,7},M={2,3,4,6},N={1,4,5},則(∁UM)∩N 等于( 。
A、{1,2,4,5,7}
B、{1,4,5}
C、{1,5}
D、{1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
3x-x2
tanx
的定義域為( 。
A、(0,3]
B、(0,π)
C、(0,
π
2
)∪(
π
2
,3]
D、[0,
π
2
)∪(
π
2
,3)

查看答案和解析>>

同步練習冊答案