【題目】已知橢圓,三點中恰有二點在橢圓上,且離心率為。
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點, 為橢圓的左右頂點, 為中點,求證:直線與直線它們的斜率之積為定值;
(3)若橢圓的右焦點為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x+ax2-2x,(a∈R,a≠0)
(1)若函數(shù)f(x)的圖象在x=1處的切線與x軸平行,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≤ax在x∈[,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成的角為45°時,求異面直線OF與BE所成的角的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)是否存在實數(shù),使得等式 對于一切正整數(shù)都成立?若存在,求出,,的值并給出證明;若不存在,請說明理由.
(2)求證:對任意的,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l方程為(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求證:直線l恒過定點P,并求出定點P的坐標(biāo);
(Ⅱ)若直線l在x軸,y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,已知b=1,c=2且2cosA(bcosC+ccosB)=a,則A=__________;若M為邊BC的中點,則|AM|=__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( 。
A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為
B. 回歸直線過樣本點的中心
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加
D. y與x具有正的線性相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點,從原點向圓作兩條切線,分別交橢圓于點.
(1)若點在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com