【題目】已知以橢圓的焦點(diǎn)和短軸端點(diǎn)為頂點(diǎn)的四邊形恰好是面積為4的正方形.

(1)求橢圓的方程;

(2)直線與橢圓交于異于橢圓頂點(diǎn)的,兩點(diǎn),為坐標(biāo)原點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為點(diǎn),直線和直線的斜率之積為1,直線軸交于點(diǎn).若直線,的斜率分別為,試判斷是否為定值,若是,求出該定值;若不是,說明理由.

【答案】(1);(2)0

【解析】

1)由題意可得到,求解即可得出橢圓方程;

2)先設(shè),,則,根據(jù),得到,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,表示出,,進(jìn)而可求出的值,得出結(jié)論.

(1)因?yàn)闄E圓的兩個(gè)焦點(diǎn)和短軸端點(diǎn)為頂點(diǎn)的四邊形恰好是面積為4的正方形,

所以,解得.所以橢圓的方程為.

(2)設(shè),,則,,

因?yàn)?/span>,所以

聯(lián)立,消,得

所以,,

所以

直線的方程為:,令,由,得,

所以,

所以.所以為定值0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,而且優(yōu)質(zhì)品檢驗(yàn)異常嚴(yán)格,檢驗(yàn)方案是:先從燒制的這批唐三彩中任取 3件作檢驗(yàn),這3件唐三彩中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批唐三彩中任取3件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批唐三彩通過檢驗(yàn);如果,再從這批唐三彩中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批唐三彩通過檢驗(yàn);其他情況下,這批唐三彩都不能通過檢驗(yàn).假設(shè)這批唐三彩的優(yōu)質(zhì)品概率為,即取出的每件唐三彩是優(yōu)質(zhì)品的概率都為,且各件唐三彩是否為優(yōu)質(zhì)品相互獨(dú)立.

(1)求這批唐三彩通過優(yōu)質(zhì)品檢驗(yàn)的概率;

(2)已知每件唐三彩的檢驗(yàn)費(fèi)用為100元,且抽取的每件唐三彩都需要檢驗(yàn),對(duì)這批唐三彩作質(zhì)量檢驗(yàn)所需的總費(fèi)用記為元,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長為.

(1)求拋物線的方程;

(2)若直線過焦點(diǎn)且與拋物線相交于兩點(diǎn),過點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn),求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=8x的焦點(diǎn),作傾斜角為45°的直線,則被拋物線截得的弦長為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn),過點(diǎn)作直線、與圓和拋物線都相切.

1)求拋物線的兩切線的方程;

2)設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,,且,平面.

1)證明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,為梯形,,,,,.

(1)在線段上有一個(gè)動(dòng)點(diǎn),滿足平面,求實(shí)數(shù)的值;

(2)已知的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)在直線上是否存在點(diǎn)Q,使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,若存在,求出線段的長的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C上的點(diǎn)到右焦點(diǎn)F的最大距離為,離心率為

求橢圓C的方程;

如圖,過點(diǎn)的動(dòng)直線l交橢圓CM,N兩點(diǎn),直線l的斜率為,A為橢圓上的一點(diǎn),直線OA的斜率為,且B是線段OA延長線上一點(diǎn),且過原點(diǎn)O作以B為圓心,以為半徑的圓B的切線,切點(diǎn)為,求取值范圍.

查看答案和解析>>

同步練習(xí)冊答案