【題目】已知函數(shù)f(x)=2cos2(x﹣ )﹣ sin2x+1
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈( , )時,若f(x)≥log2t恒成立,求 t的取值范圍.
【答案】解:(Ⅰ)∵f(x)=cos(2x﹣ )﹣ sin2x+2= cos2x﹣ sin2x+2=cos(2x+ )+2, 由2kπ﹣π≤2x+ ≤2kπ,k∈Z,得k ≤x≤k ,k∈Z,
∴f(x)的單調(diào)遞增區(qū)間為[k ,k ],k∈Z,.
(或者:f(x)= ﹣ +2= cos2x﹣ +2
=﹣ +2,
令 +2kπ≤ ≤ +2kπ,k∈Z.
則 +kπ≤x≤ +kπ,k∈Z.…(5分)
∴f(x)的單調(diào)遞增區(qū)間為:[ +kπ, +kπ],k∈Z.
(Ⅱ)∵ ,
∴ ,
∴﹣1≤cos( )≤﹣ ,1≤cos(2x+ )+2 ,
(或者:∵ ,∴
∴ ≤ ≤1∴1≤﹣ +2≤
∴f(x) ,f(x)min=1.
若f(x)≥log2t恒成立,∴則log2t≤1,
∴0<t≤2,
即t的取值范圍為(0,2]
【解析】(Ⅰ)由三角函數(shù)中的恒等變換應(yīng)用化簡函數(shù)解析式可得f(x)=cos(2x+ )+2,由2kπ﹣π≤2x+ ≤2kπ,k∈Z,即可解得f(x)的單調(diào)遞增區(qū)間.(Ⅱ)由 ,可得 ,解得1≤cos(2x+ )+2 ,求得f(x) ,f(x)min=1,由題意log2t≤1,從而解得t的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,如果存在正實數(shù),使得對任意,都有,且恒成立,則稱函數(shù)為上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時, ,若為上的“2017的型增函數(shù)”,則實數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示直角梯形ABCD中,AB∥DC,∠A=90°,AB=AD=2DC=4,畫出該梯形的直觀圖A′B′C′D′,并寫出其做法(要求保留作圖過程的痕跡.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)小明訂了一份報紙,送報人可能在早上6:30—7:30之間把報紙送到,小明離家的時間在早上7:00—8:00之間,則他在離開家之前能拿到報紙的概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗次數(shù) |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮不同地區(qū)的干旱程度,當(dāng)雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記“甲、乙、丙三地中緩解旱情的個數(shù)”為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F(xiàn)分別是CC1 , BC的中點.
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|3≤3x≤27}, .
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當(dāng)|MN|=2 時,求直線l方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com