以原點為頂點,橢圓=1的左準線為準線的拋物線交橢圓的右準線于A、B兩點,則AB的長度為

[  ]

A.2
B.4
C.8
D.16
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)
的離心率為
1
2
,上、下頂點分別為A1,A2,橢圓上的點到上焦點F1的距離的最小值為1.
(1)求橢圓C的標準方程.
(2)以原點為頂點,F(xiàn)1為焦點的拋物線上的點P(非原點)處的切線與x軸,y軸分別交于Q、R兩點,若
PQ
PR
,求λ的值.
(3)是否存在過點(0,m)的直線l,使得l與橢圓相交于A、B兩點(A、B不是上、下頂點)且滿足
A1A
A1B
=0
,若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的焦點為F1(-1,0)、F2(1,0),直線x=4是它的一條準線.
(1)求橢圓的方程;
(2)設(shè)A1、A2分別是橢圓的左頂點和右頂點,P是橢圓上滿足|PA1|-|PA2|=2的一點,求tan∠A1PA2的值;
(3)若過點(1,0)的直線與以原點為頂點、A2為焦點的拋物線相交于點M、N,求MN中點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•香洲區(qū)模擬)已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(I)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于Al,A2的任意一點,設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1,kMA2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•東城區(qū)模擬)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為
2
2
.以原點為圓心,橢圓的短軸長為直徑的圓與直線x-y+
2
=0相切.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 如圖,若斜率為k(k≠0)的直線l與x軸、橢圓C順次相交于點A,M,N(A點在橢圓右頂點的右側(cè)),且∠NF2F1=∠MF2A.
(ⅰ)求證:直線l過定點(2,0);
(ⅱ)求斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案