【題目】已知函數(shù)f(x)=lnx+a(x2﹣1).
(1)討論函數(shù)f(x)的單調性;
(2)當a,x∈[1,+∞)時,證明:f(x)≤(x﹣1)ex.
【答案】(1)函數(shù)f(x)在區(qū)間上單調遞增,在區(qū)間
上單調遞減(2)見解析
【解析】
(1)對f(x)求導,分a≥0, a<0討論,分析導函數(shù)正負,得到函數(shù)f(x)的單調性;
(2)構造函數(shù),對g(x)求導,得到
,通過二次求導分析
正負,進而得到g(x)的單調性,及g(x)的最小值,故得解.
(1)函數(shù)的定義域為(0,+∞),,
當a≥0時,f′(x)>0在(0,+∞)上恒成立,所以函數(shù)f(x)在(0,+∞)上單調遞增,
當a<0時,由f′(x)>0解得,由f′(x)<0解得
,
∴函數(shù)f(x)在區(qū)間上單調遞增,在區(qū)間
上單調遞減;
(2)證明:令,則
,g′(1)=e﹣(e﹣1)﹣1=0,
再令,則
,
當x≥1時,,
∴,即m′(x)>0,
∴y=m(x)在[1,+∞)上單調遞增,
∵m(1)=g′(1)=0,
∴m(x)≥m(1)=0,
∴y=g(x)在[1,+∞)上單調遞增,
∴g(x)≥g(1)=0,
綜上可知,f(x)≤(x﹣1)ex.
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列的前
項和為
,已知
,且
對一切
都成立.
(1)當時.
①求數(shù)列的通項公式;
②若,求數(shù)列
的前
項的和
;
(2)是否存在實數(shù),使數(shù)列
是等差數(shù)列.如果存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某銷售公司在當?shù)?/span>、
兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了
、
兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),
表示銷售公司每日共需購進食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤的期望為決策依據(jù),在與
之中選其一,應選哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個交點,設兩個交點的橫坐標分別為x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以線段EF為直徑的圓內切于圓O:x2+y2=16.
(1)若點F的坐標為(﹣2,0),求點E的軌跡C的方程;
(2)在(1)的條件下,軌跡C上存在點T,使得,其中M,N為直線y=kx+b(b≠0)與軌跡C的交點,求△MNT的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
為自然對數(shù)的底數(shù).
(1)求證:當時,
;
(2)若函數(shù)有兩個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年是中國成立70周年,也是全面建成小康社會的關鍵之年.為了迎祖國70周年生日,全民齊心奮力建設小康社會,某校特舉辦“喜迎國慶,共建小康”知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是( )
A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)
C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設分別是橢圓
的左、右焦點.
(1)若是該橢圓上的一個動點,求
的最大值和最小值;
(2)設過定點的直線
與橢圓交于不同的兩點
,且
為銳角(其中
為坐標原點),求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA=1,PC=3,BC=2,sin∠PCA,E,F,G分別為線段的PC,PB,AB中點,且BE
.
(1)求證:AB⊥BC;
(2)若M為線段BC上一點,求三棱錐M﹣EFG的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com