已知動點(diǎn)P到點(diǎn)A(-2,0)與點(diǎn)B(2,0)的斜率之積為-,點(diǎn)P的軌跡為曲線C.

(1)求曲線C的方程;
(2)若點(diǎn)Q為曲線C上的一點(diǎn),直線AQ,BQ與直線x=4分別交于M,N兩點(diǎn),直線BM與橢圓的交點(diǎn)為D.求證,A,D,N三點(diǎn)共線.
(1)y2=1(x≠±2).(2)見解析
(1)解 設(shè)P點(diǎn)坐標(biāo)(xy),則kAP (x≠-2),kBP (x≠2),由已知·=-,化簡,得y2=1,所求曲線C的方程為y2=1(x≠±2).
(2)證明 由已知直線AQ的斜率存在,且不等于0,設(shè)方程為yk(x+2),
消去y,得(1+4k2)x2+16k2x+16k2-4=0,①
因?yàn)椋?,xQ是方程①的兩個(gè)根,所以-2xQ,得xQ,又yQk(xQ+2)=k,所以Q.
當(dāng)x=4,得yM=6k,即M(4,6k).
又直線BQ的斜率為-,方程為y=- (x-2),當(dāng)x=4時(shí),得yN=-,即N.直線BM的斜率為3k,方程為y=3k(x-2).
消去y得:
(1+36k2)x2-144k2x+144k2-4=0,②
因?yàn)?,xD是方程②的兩個(gè)根,
所以2·xD,
xD,又yD=3k(xD-2)=-,
D,
由上述計(jì)算:A(-2,0),
D,N.
因?yàn)?i>kAD=-,kAN=-,所以kADkAN.
所以A,D,N三點(diǎn)共線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,焦距為的橢圓的兩個(gè)頂點(diǎn)分別為,且與n,共線.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓有兩個(gè)不同的交
點(diǎn),且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線過橢圓的左焦點(diǎn)和一個(gè)頂點(diǎn),則橢圓的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l交橢圓4x2+5y2=80于M,N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是    ( ).
A.6x-5y-28=0B.6x+5y-28=0
C.5x+6y-28=0D.5x-6y-28=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是橢圓上的一動點(diǎn),為橢圓的兩個(gè)焦點(diǎn),是坐標(biāo)原點(diǎn),若的角平分線上的一點(diǎn),且,則的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓(a>b>0)的離心率為,過右焦點(diǎn)且斜率為(k>0)的直線于相交于兩點(diǎn),若,則 =(  )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)是橢圓上的一點(diǎn), 是焦點(diǎn), 且, 則△的面積是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上的任意一點(diǎn),若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,則此橢圓的離心率為       

查看答案和解析>>

同步練習(xí)冊答案