【題目】在極坐標(biāo)系中,已知曲線:和曲線:,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.
【答案】(1)的直角坐標(biāo)方程為,的直角坐標(biāo)方程為.(2).
【解析】
(1)極坐標(biāo)方程化為直角坐標(biāo)方程可得的直角坐標(biāo)方程為,的直角坐標(biāo)方程為.
(2)由幾何關(guān)系可得直線的參數(shù)方程為(為參數(shù)),據(jù)此可得,,結(jié)合均值不等式的結(jié)論可得當(dāng)且僅當(dāng)時(shí),線段長度取得最小值為.
(1)的極坐標(biāo)方程即,則其直角坐標(biāo)方程為,
整理可得直角坐標(biāo)方程為,
的極坐標(biāo)方程化為直角坐標(biāo)方程可得其直角坐標(biāo)方程為.
(2)設(shè)曲線與軸異于原點(diǎn)的交點(diǎn)為,
∵,∴過點(diǎn),
設(shè)直線的參數(shù)方程為(為參數(shù)),
代入可得,解得或,
可知,
代入可得,解得,
可知,
所以,
當(dāng)且僅當(dāng)時(shí)取等號,
所以線段長度的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),記的導(dǎo)函數(shù)為,當(dāng)時(shí),滿足.若使不等式 成立,則實(shí)數(shù)的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為函數(shù)的導(dǎo)函數(shù).
(1)分別判斷與的奇偶性;
(2)若,求的零點(diǎn)個(gè)數(shù);
(3)若對任意的,恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為
(1)求的值; (2)求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點(diǎn),為的中點(diǎn), ,.將△沿折起到△的位置,使得平面平面, 為的中點(diǎn),如圖2.
(Ⅰ)求證: 平面;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分?jǐn)?shù)據(jù)如下表:
(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;
(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預(yù)測該地區(qū) 2018年的糧食產(chǎn)量.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖像與的圖像有交點(diǎn),求的取值范圍;
(3)若函數(shù),是否存在實(shí)數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:.記作數(shù)列,若數(shù)列的前項(xiàng)和為,則___ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( )
A.順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的,每一個(gè)算法都離不開順序結(jié)構(gòu)
B.循環(huán)結(jié)構(gòu)是在一些算法中從某處開始,按照一定的條件,反復(fù)執(zhí)行某些步驟,所以循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)
C.循環(huán)結(jié)構(gòu)中不一定包含條件結(jié)構(gòu)
D.用程序框圖表示算法,使之更加直觀形象,容易理解
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com