(2004•武漢模擬)(文科)在棱長為1的正方體ABCD-A′B′C′D′中,AC′為對角線,M、N分別為BB′,B′C′中點,P為線段MN中點.
(1)求DP和平面ABCD所成的角的正切;
(2)求四面體P-AC′D′的體積.
分析:(1)要求DP和平面ABCD所成的角的正切,關鍵是確定DP和面ABCD所成角,根據面BC′⊥面AC,故可作PH⊥BC,從而可得∠HDP為所求;
(2)利用三棱錐的體積公式可求.
解答:解:(1)過P作PH⊥BC于足H,連DH,
∵面BC′⊥面AC,則PH⊥面ABCD,
∴DP和面ABCD所成角即為∠HDP.
在正方形BCC′B′,M,N分別為BB′,B′C′中點,P為MN中點,
又B′C′=1,則PH=
3
4
,BH=
1
4
,CH=
3
4
,
DH=
DC2+DH2
=
1+(
3
4
)
2
=
5
4

在Rt△PHD中,tan∠HDP=
3
4
5
4
=
3
5
(6分)

(2)連BC′和B′C交于Q,因為BCC′B′為正方形,則PQ⊥BC′則PQ=
1
4
B′C=
2
4
,而S△AC′D′=
1
2
•1•
2
=
2
2

VP-AC′D′=
1
3
2
2
2
4
=
1
12
(體積單位)(12分)
點評:本題以正方體為載體,考查是直線與平面所成的角,考查棱錐的體積,關鍵是線面角的確定.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)(理科)已知兩點A(3,2)和B(-1,4)到直線mx+y+3=0距離相等,則m值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)若雙曲線
x2
9
-
y2
m
=1
的漸近線l方程為y=±
5
3
x
,則雙曲線焦點F到漸近線l的距離為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)(文科)銳角α滿足sinα•cosα=
1
4
,則tanα
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)已知函數(shù)y=f-1(x)的圖象過(1,0),則y=f(
1
2
x-1)
的反函數(shù)的圖象一定過點( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)(理科)若銳角α,β滿足tanα•tanβ=
13
7
,且sin(α-β)=
5
3
,求

(1)cos(α-β); (2)cos(α+β)

查看答案和解析>>

同步練習冊答案