定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.
(1)判斷函數(shù)是否是有界函數(shù),請(qǐng)寫(xiě)出詳細(xì)判斷過(guò)程;
(2)試證明:設(shè),若在上分別以為上界,
求證:函數(shù)在上以為上界;
(3)若函數(shù)在上是以3為上界的有界函數(shù),
求實(shí)數(shù)的取值范圍.
(1)是有界函數(shù)(2)見(jiàn)解析(3)
解析試題分析:(1),當(dāng)時(shí),
則,由有界函數(shù)定義可知是有界函數(shù)
(2)由題意知對(duì)任意,存在常數(shù),都有成立
即,同理(常數(shù))
則,即
在上以為上界
(3)由題意知,在上恒成立。
,
∴ 在上恒成立
∴
設(shè),,,由得 t≥1,
設(shè),,
所以在上遞減,在上遞增,(單調(diào)性不證,不扣分)
在上的最大值為,
在上的最小值為。
所以實(shí)數(shù)的取值范圍為
考點(diǎn):二次函數(shù)求最值及不等式恒成立問(wèn)題
點(diǎn)評(píng):不等式恒成立轉(zhuǎn)化為求函數(shù)最值問(wèn)題,利用單調(diào)性可求最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是定義在上的偶函數(shù),當(dāng)時(shí), 。
(1)用分段函數(shù)形式寫(xiě)出在上的解析式;
(2)畫(huà)出函數(shù)的大致圖象;并根據(jù)圖像寫(xiě)出的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分).某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為千元,設(shè)該容器的建造費(fèi)用為千元.
(Ⅰ)寫(xiě)出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費(fèi)用最小時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分15分)已知函數(shù),
(1)若,且的取值范圍
(2)當(dāng)時(shí),恒成立,且的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同時(shí)滿(mǎn)足條件:
①x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù)
(1)若
(2)若函數(shù)的圖像上有與軸平行的切線,求的取值范圍。
(3)若函數(shù)
求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com