為防止山體滑坡,某地決定建設(shè)既美化又防護(hù)的綠化帶,種植松樹、柳樹等植物.某人一次種植了n株柳樹,各株柳樹成活與否是相互獨立的,成活率為p,設(shè)ξ為成活柳樹的株數(shù),數(shù)學(xué)期望E(ξ)=3,標(biāo)準(zhǔn)差σ(ξ)為.
(1)求n、p的值并寫出ξ的分布列;
(2)若有3株或3株以上的柳樹未成活,則需要補(bǔ)種,求需要補(bǔ)種柳樹的概率.
(1)n=6,p=,(2)
(1)由E(ξ)=np=3,(σ(ξ))2=np(1-p)=,得1-p=,從而n=6,p=,
ξ的分布列為
ξ
0
1
2
3
4
5
6
P







(2)記“需要補(bǔ)種柳樹”為事件A,
則P(A)=P(ξ≤3),得P(A)=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校舉行知識競賽,第一輪選拔共設(shè)有A,B,C,D四個問題,規(guī)則如下:①每位參加者計分器的初始分均為10分,答對問題A,B,C,D分別加1分,2分,3分,6分,答錯任意題減2分;
②每答一題,計分器顯示累計分?jǐn)?shù),當(dāng)累積分?jǐn)?shù)小于8分時,答題結(jié)束,淘汰出局;當(dāng)累積分?jǐn)?shù)大于或等于14分時,答題結(jié)束,進(jìn)入下一輪;答完四題累計分?jǐn)?shù)不足14分時,答題結(jié)束淘汰出局;
③每位參加者按A,B,C,D順序作答,直至答題結(jié)束.
假設(shè)甲同學(xué)對問題A,B,C,D回答正確的概率依次為
3
4
,
1
2
,
1
3
,
1
4
,且各題回答正確與否相互之間沒有影響.
(Ⅰ)求甲同學(xué)能進(jìn)入下一輪的概率;
(Ⅱ)用ξ表示甲同學(xué)本輪答題的個數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

裝有某種產(chǎn)品的盒中有7件正品,3件次品,無放回地每次取一件產(chǎn)品,直至抽到正品為止,已知抽取次數(shù)ξ為隨機(jī)變量,則抽取次數(shù)ξ的數(shù)學(xué)期望E(ξ)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)
運行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計表(部分)
運行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個盒子里裝有7張卡片, 其中有紅色卡片4張, 編號分別為1, 2, 3, 4; 白色卡片3張, 編號分別為2, 3, 4.從盒子中任取4張卡片 (假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中, 含有編號為3的卡片的概率.
(2)再取出的4張卡片中, 紅色卡片編號的最大值設(shè)為X, 求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩名射手在一次射擊中的得分為兩個相互獨立的隨機(jī)變量ξ和η,且ξ、η分布列為
ξ
1
2
3
P
a
0.1
0.6
 
η
1
2
3
P
0.3
b
0.3
(1)求a、b的值;
(2)計算ξ、η的期望和方差,并以此分析甲、乙的技術(shù)狀況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某人進(jìn)行射擊,每次中靶的概率均為0.8,現(xiàn)規(guī)定:若中靶就停止射擊,若沒中靶,則繼續(xù)射擊,如果只有3發(fā)子彈,則射擊數(shù)X的均值為________.(填數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個,則其中含紅球個數(shù)的數(shù)學(xué)期望是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130 t該農(nóng)產(chǎn)品.以X(單位: t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)將T表示為X的函數(shù);
(2)根據(jù)直方圖估計利潤T不少于57 000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x∈[100,110),則取X=105,且X=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案