(本小題滿分12分)
設(shè)函數(shù)
(1)求函數(shù)的極大值和極小值
(2)直線與函數(shù)的圖像有三個交點,求的范圍
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=﹣對稱,且f′(1)=0
(Ⅰ)求實數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)若在上為增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx.
(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x)的導(dǎo)數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,其中e為自然對數(shù)的底數(shù).
(1)若是增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,求函數(shù)上的最小值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ln x-p(x-1),p∈R.
(1)當(dāng)p=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=xf(x)+p(2x2-x-1)(x≥1),求證:當(dāng)p≤-時,有g(shù)(x)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)已知點和函數(shù)圖象上動點,對任意,直線傾斜角都是鈍角,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com