函數(shù)f(x)=
log
1
3
(x-3)
的定義域?yàn)椋ā 。?/div>
A、(3,+∞)
B、[3,+∞)
C、(3,4]
D、(-∞,4]
考點(diǎn):函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由于偶次根式被開(kāi)方數(shù)非負(fù),對(duì)數(shù)的真數(shù)大于0,即得
x-3>0
log
1
3
(x-3)≥0
,運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性,即可解得.
解答: 解:要使函數(shù)有意義,
則有
x-3>0
log
1
3
(x-3)≥0
,即有
x>3
0<x-3≤1
,
解得3<x≤4,
故函數(shù)的值域?yàn)椋?,4].
故選C.
點(diǎn)評(píng):本題考查函數(shù)的定義域的求法,注意偶次根式被開(kāi)方數(shù)非負(fù),對(duì)數(shù)的真數(shù)大于0,以及對(duì)數(shù)函數(shù)的單調(diào)性及運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用定義法證明函數(shù)f(x)=
2
x+1
在區(qū)間(-1,+∞)上是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x+
1
a
|+|x-a|(a>0),證明:f(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=
2
2x+1
+a是奇函數(shù),則a的值是(  )
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=sin2x+m•cosx+
5
8
m-
3
2
在閉區(qū)間[0,
π
2
]上的最大值是1,則滿足條件的m值為( 。
A、
3
2
12
5
B、
12
5
20
13
C、
3
2
20
13
12
5
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x∈R|x>1},B={x∈R|-1≤x≤2},則A∩B=( 。
A、[-1,+∞)
B、(1,+∞)
C、(1,2]
D、[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x<0時(shí),f(x)滿足2f(x)+xf′(x)<xf(x),則f(x)在R上的零點(diǎn)個(gè)數(shù)為( 。
A、1B、3C、5D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角三角形斜邊長(zhǎng)等于6cm,則面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方形ABCD中,AB=3,BC=1,E為DC的三等分點(diǎn)(靠近C處),F(xiàn)為線段EC上一動(dòng)點(diǎn)(包括端點(diǎn)),現(xiàn)將△AFD沿AF折起,使D點(diǎn)在平面內(nèi)的攝影恰好落在邊AB上,則當(dāng)F運(yùn)動(dòng)時(shí),二面角D-AF-B平面角余弦值的變化范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案